挑战你的创造力,面对微软公司的面试问题,如果是你,你该怎么回答呢?
★如何将计算机技术应用于一幢100层高的办公大楼的电梯系统上?你怎样优化这种应用?工作日时的交通、楼层或时间等因素会对此产生怎样的影响?
★你如何对一种可以随时存在文件中或从因特网上拷贝下来的操作系统实施保护措施,防止被非法复制?
★你如何重新设计自动取款机?
★假设我们想通过电脑来操作一台微波炉,你会开发什么样的软件来完成这个任务?
★你如何为一辆汽车设计一台咖啡机?
★如果你想给微软的Word系统增加点内容,你会增加什么样的内容?
★你会给只有一只手的用户设计什么样的键盘?
★你会给失聪的人设计什么样的闹钟?
10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下提名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?
为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,在这样的编号提示下大家开始思考吧,看谁够得上微软的用人标准。