快好知 kuaihz

keras fit训练

Keras深度学习库包括三个独立的函数,可用于训练您自己的模型:

 

.fit

.fit_generator

.train_on_batch

.fit

训练与验证分离

network.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = network.evaluate(test_images, test_labels)

训练与验证并行

history = model.fit(partial_x_train, partial_y_train, epochs=4, batch_size=512, validation_data=(x_val, y_val))

predict

predict1=model.predict(x_val)

.fit_generator

history = model.fit_generator(

          train_generator,

          steps_per_epoch=100,

          epochs=30,

          validation_data=validation_generator,

          validation_steps=50)

flow_from_directory

图片被放在以分类名命名的一个个子文件夹里

test_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255)

    validation_generator = test_datagen.flow_from_directory(

            validation_dir,

            target_size=(150, 150),

            batch_size=20,

            class_mode="binary")

flow_from_dataframe

当图片路径及分类名存在一个表格里。

train_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255)

train_generator =train_datagen.flow_from_dataframe(dataframe =df,

        #directory ="./ train /",

        x_col ="PictureName",

        y_col ="TagName",

        subset ="training",

        batch_size = 8,

        seed = 42,

        shuffle = True,

        classes=categorys,  #传了但没效果

        class_mode ="categorical",#categorical sparse raw sparse

        target_size =(width, height))

会自动按分类名排序记为分类序号。  传classes=["aa","cc","bb"] ,可以自己定义分类序号,但好像没用。

更新内容请参考:

https://blog.csdn.net/weixin_43346901/article/details/100095019

自定义generator

 trainGen = csv_image_generator(df, BS,0,trainCount,

    mode="train", aug=None)

    testGen = csv_image_generator(df, BS,trainCount,len(df), 

    mode="train", aug=None)

.train_on_batch

model.train_on_batch(batchX, batchY)

异常处理

Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (500, 400, 3)

原: predict1=model.predict([x1])

改为:predict1=model.predict(np.array([x1]))

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:keras fit训练  训练  训练词条  keras  keras词条  fit  fit词条