用户分层是业务运作的结果,用户分层是应用于业务运作。因此看似简单的分层,只要和业务结合起来,就很容易解释清楚,也很容易定位到问题。
有同学问:
领导让做用户分层,可不管怎么分,似乎都觉得没有啥科学道理,也经常被嫌弃“你这分层分的有啥意思”。
到底有没有标准的分层规范?
在解答这个问题之前,大家先看一个简单的问题:
假设一个业务收入情况如下,你会怎么解读数据?
本质上看,用户分层是一种特殊形态的用户细分:按用户价值高低进行细分,处于上层的是高价值用户;处于下层的是低价值用户。
比如上边的题目,大部分同学会脱口而出:
总收入在下降;
人均付费减少了17%,用户增长了20%;
要把人均付费提高,再搞多25。
看平均数,就会得出这种结论。可实际上,平均值降低25元,是不是等于业务就得想办法拉高25元呢?
当然不是,因为我们并不了解这一万多用户的构成。如果我们告诉大家,这1万人有下边两种形态构成,大家还会觉得,人均拉高25元就可以了吗?
这就是用户分层作用的直观展示,我们会发现:通过平均数,观察到的趋势是对的;但推导出的执行计划,往往是错的。落到执行层面,需要进行用户细分,才能更容易找到真正问题,制定可行的计划。
用户分层还有个特殊作用,就是一个企业提供给高中低档用户的产品/服务/体验是有限的,往往是固定的高中低档套餐,高配/标配/低配产品,高级/中级/初级VIP服务。当我们分开高中低档观察用户的时候,很容易直观看到,我们提供的产品/服务/体验是不是出了问题,我们正在损失哪一档顾客。
这样的分析指向性非常强,可以快速定位问题,帮运营找到突破口。
比如上边例子中的AB形态,为了举例方便进行了简化,但代表了两种很经典的业务形态,依赖土豪用户的大R型业务和依赖大量普通用户的大DAU型业务(大R和大DAU是游戏行业术语,这两种形态在游戏行业区分最泾渭分明,因此这里直接套用一下)。
了解到这一层,再看回AB两形态,我们就能更准确定位出问题。
经过这一层解读,是不是比只看平均数,然后说“客单价低了,要提高”来得更透彻?
这就是用户分层的进一步作用:通过结合业务行为的分层,快速定位业务问题。
看了示例,有同学会说:“看起来分层很简单啊,用户价值吗,付费≥活跃≥注册,我直接叠个金字塔(如下图)不就好了,我看网上都是这么叠的。”
要记得,做用户分层是为了快速定位问题,如果只是像上图,单纯把注册、活跃、付费叠成金字塔,图形看着挺牛逼。可本质上,不就是把用户量、活跃率、转化率三个指标用金字塔图的形式再说一遍吗?
图和报表含义一样,那多做个奇形怪状的图就是脱了裤子放屁,这也是开头被吐槽的原因。
还有同学会说:“我看示例,也就是一个维度砍几段,那我把付费、活跃这些维度看看,做个类似下图:想象中分层效果,不就好了?”
用户付费、活跃指标之间,有交叉很常见的事。当分类维度相互交叉,一层用户又包含另一层的时候,解读起来就很费劲,这时候还不如直接做个矩阵分类看得更清楚。
综上,用户分层之所以经常做的流于表面,很大程度是因为做分析的同学缺少细化思考的意识,过分追求画一个层层叠叠的图,来显得思考全面;忽视了这个图对业务的作用,忽视了业务本身在不同阶段有不同需求。
做用户分层其实很简单,如下图所示,只需要“分类维度+分类标准”两样东西即可。
我们说过,用户分层的最大用户是快速定位问题,提示业务突破口。
想要达到这两重目的,就得做到(如下图所示):
分类维度是当前业务的关键问题;
分类标准和业务动作直接相关。
业务发展的关键问题和业务动作,并非完全异想天开,或者“听领导指示”,而是与产品/业务发展的生命周期高度相关。
每次讲到“要了解当前业务重点问题”,都有同学说直接去问。直接沟通是好事,但是如果自己啥都不懂,不但业务懒得分享,偶尔说几个词可能还听不懂;甚至有可能运营自己都是稀里糊涂,领导说啥干啥,不动脑子。所以做分析的同学还是得有些了解的。
基于发展阶段选分类维度
通常一个产品/业务上线会经历五个阶段(如下图所示),每个阶段要关注的核心指标、关键问题是不一样的。
传统企业在产品生命周期末尾会选择甩货、等下一代产品上线,互联网企业做多次迭代的可能性更高。
在不同的阶段,业务关注的问题也会不同,如下图所示:
有了这些基础,我们能对当前形势做初步判断,和业务沟通也更顺畅。定出当前关注的重点问题,就能锁定分类维度,下边再看分类标准。
基于业务动作设分类标准
企业能提供给用户的产品/服务/体验是有限的,它受到三方限制。
产品限制:每种产品,每个产品组合能满足用户的需求是有限的;
竞品限制:即使企业能提供众多产品,也很难包装拼的过对手;
需求限制:用户口味会经常变化,今天喜欢,明天就不喜欢。
在这三方限制下,往往运营会选择爆款战略,用一个爆款产品/有竞争力的服务/优质的顾客体验来吸引用户,达成自己的目标。
用户处于新人阶段,有一个入门级产品;在成长期会在某个节点设立特别优惠的奖励。这些节点,就成为天然的分类标准。
在这方面,传统企业做的反而比互联网企业要好。传统企业指望卖产品的毛利过日子,因此对给客户多少回馈有清晰的界定。
一般是从毛利中拨一个固定比例作为回馈,然后参照竞争对手的比例,选择自己主打的档位,从而形成竞争优势。这样对应的分类标准,也可以直接套用业务的标准(如下图所示)。
在这种分层标准的指导下,就很容易根据分层数据的变化,找到对应的问题。如同开头举例的效果,看到某个档次的用户少了,立马意识到:找人找偏了,产品竞争力得检讨了。这样后续深入分析,也有了线索。
反倒是互联网企业,除了少数头部企业外,大量企业还停留在大干快上、烧钱补贴阶段。缺少清晰的产品线规划和竞争策略,反正运营有钱就往死里发券,做大了规模好上市圈钱。所以,在互联网公司经常培养出“注册少了-发券,活跃不行-发券,留存不行-发券”的无脑运营。
如果做数据分析的同学,发现你们公司的运营真的很无脑,都是看着AARRR哪个指标跌了就短期上活动搞一搞,完全没有全局规划,也没啥策略。那可以试着参照竞品的情况,做一个竞品分析,把本品、竞品在不同消费/活跃程度的用户身上的差异分清楚,帮他们看到:我们其实在XX档次有优势,在XX档次有劣势。
因此,我们可以制定用户分层战术,进一步系统优化。毕竟我们是搞运营,不是搞活动。
小结
用户分层看起来简单,可深入探讨的话,需要牵扯的业务细节非常多。
很多同学做起来很困扰,都是困扰在“领导让我分高端用户,到底是8000算高端,10000算高端,还是12000算高端”。
是滴,他就纠结这个划线,纠结地死去活来。
你反问:
目前阶段的重点问题是什么?
在目前阶段,高端真的就是“高消费”?
8K,10K,12K背后,对应运营的什么动作?
我们做的动作,到底对用户有什么吸引力,竞争力?
他啥都不知道,他还在指望着,能有个机器学习算法,啪啪一算,就告诉他:“人工智能阿尔法大狗子告诉你,10000是完美的标准,谁不服气,阿尔法大狗子咬死他”。
这就南辕北辙了。
用户分层是业务运作的结果,用户分层是应用于业务运作。因此看似简单的分层,只要和业务结合起来,就很容易解释清楚,也很容易定位到问题。
与大家共勉。