初二数学上学期教学工作计划
推荐度:
相关推荐
初二数学教学工作计划集合五篇
时间过得可真快,从来都不等人,我们的工作又将在忙碌中充实着,在喜悦中收获着,是时候认真思考工作计划如何写了。工作计划怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的初二数学教学工作计划5篇,欢迎大家分享。
初二数学教学工作计划 篇1
新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,怎样做好这些艰巨而富有重大意义的工作,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,提高自身的业务能力,围绕我校新学期的工作计划要求制定初一数学教学计划:
一、指导思想:
教育学生掌握初中数学学习常规,掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、学情分析
。从学生的成绩来看,比较理想。两个班的优生只有二十个,仅占百分之十,而学困生接近百分之四十,。大部分同学的数学成绩不理想,大部分学生数学基础差,底子薄给教学带来了一定的困难,所以今年的教学任务较重。所以要根据实际情况,面对全体,因材施教,对于学习较差的同学今年进行小组辅导,对特别差的学生可以进行个别辅导
三、在教学过程中抓住以下几个环节
1、发挥集体智慧,认真进行集体备课。
新的学期,初中数学课课节较少,怎么能在有限的时间里提高学习效率是所有数学老师面对的问题?在这里,学校给我们明确了方向。加强集体备课,发挥集体智慧,认真研究教材及课程标准,争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等,让每一节课上出实效,让每位学生愉悦的获得新知。
2、学习和强化“自主学习”与分层教学实践
新的学期,我校所有学科都主张自主学习与集体备课,争取每节课前,与同组同仁们讨论、研究确定重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等通过学案的使用,能够使学生明确学习任务,了解教学目标,对于课堂教学省时高效,取得事半功倍的`好效果
3、抓住课堂45分钟。 。严格按照教学计划,备课统一进度,统一练习,进行教学,在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,能“吃”饱、“吃”好。
4、多读书,读好书和积极开展我的三分钟,我展示活动
多读几本对自己有帮助的书,既提高了自己的能力,又丰富了自己的视野,使自己不被时代所抛弃。“我的三分钟我展示活动”对于教学起了推动促进的作用。通过活动的开展,提高了同学们的学习兴趣,同时又提高了同学们的讲解能力。促进了师生之间的关系。
5、积极投身到培养学生的良好的学习习惯中去。
今年,我们数学组课题是培养学生的良好的学习习惯。好的学习习惯不是一朝一夕就能够养成的,需要教师的督促,学生的坚持,才能成功。
6、注重课后反思,课后反溃及时的将一节课的得失记录下来,不断积累教学经验。总结好下一次应注意的细节。精选适当的练习题、测试卷,及时批改作业,发现问题对症下药。及时反馈信息提高课堂效益,给学生面对面的指出并指导学生搞懂弄通,今天的任务不推托到明日,不留一个疑难点,让学生学有所获。
7、重视单元检测,认真做好教学质量分析。使用学科组教师共同研讨、筛选的同一份试题,测验试题的批改不过夜。测试后必须进行质量分析,评价必须使用等级。按时检验学习成果,做到课标达成的有效、及时,考核后对典型错误利用学生想马上知道答案的心理立即点评。
三、不断钻研业务,提高业务能力及水平。切实重视听评课,确保每周听课至少1节。积极参加业务学习,看书、看报,参加各级教研组织的培训和系列课达标,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。通过听课、评课、说课等方式,努力提高自身的业务水平。
四、需要注意的方面:
1.在课堂上改进教学方法,多采用探索、启发式教学。
2.注意教科书的系统性和学科知识的整合,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.加强开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
6.注意解题方法和解题策略的学习。
7.因材施教,宽容爱护学生,充分发挥学生的主体作用。
初二数学教学工作计划 篇2
一、教材的地位和作用
从《数学课程标准》看,关于数的内容,初中学段主要学习有理数和实数,它们是“数与代数”领域的重要内容。对于有理数和实数,初中学段共有安排三个章节的内容,分别是七年级上册第一章《有理数》,八年级上册第十三章《实数》和九年级上册第二十一章《二次根式》。本章可以看成其后的代数内容的起始章,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,它不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。
二、教学内容分析
(一)本章知识结构框图
1.本章知识的内在结构如下图所示:
2.本章知识的展开顺序如下图所示:
(二)教科书内容分析
本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。
教科书的第一节是平方根,本节先研究算术平方根,再研究平方根。教科书首先创设一个问题情景,抽象出这个情景中的数学问题,即已知正方形的面积求边长的问题,这是一个典型的求算术平方根的问题,这与学生以前熟悉的已知边长求面积是一个互逆的过程。通过对这类问题的探讨,引出算术平方根,给出算术平方根的概念和它的符号表示,这时教科书所涉及到的被开方数都是完全平方数。接着,教科书设置一个“探究”栏目,要求学生将两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长。这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是 这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数。另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数。 出现以后,一个很自然的问题,就是要讨论 的大小。教科书采用夹逼的方法,利用不足近似和过剩近似来估计 的大小,通过一步一步的估计,得到a的越来越精确的近似值,进而指出 是一个无限不循环小数的事实,同时指出 等也是无限不循环小数等,这就为后面认识无理数打下基础。会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法。用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子介绍了用有理数估计无理数的常用方法。至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容。接着,教科书设置一个“思考”栏目,对平方根展开讨论。在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于 1,16,36……的数,由此归纳给出平方根的概念,进而引出开平方运算。开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明。最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨了数的平方根的特征,并通过一个“归纳”栏目,要求学生自己归纳给出 “正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”等这些数的平方根的特征。
教科书第二节是立方根。对于立方根,教科书采用了与讨论平方根类似的方法进行讨论。首先设置一个问题情景,从这个问题情景中抽象出数学问题,就是已知立方体的体积求它边长的问题,这是一个典型的求数的立方根的问题。这样教科书就从这个典型问题引出立方根的概念和开立方运算。接着,教科书类比着平方运算与开平方运算的互逆关系,探讨了立方运算与开立方运算的互逆关系,并通过一个“探究”栏目,学习求数的立方根的方法。在这个“探究”栏目中,要求学生分别计算一些正数、负数和0的立方根,通过这些计算,一方面让学生学习利用立方运算与开立方运算的互逆关系求立方根的方法,另一方面也为下面探讨数的立方根的特征作准备。紧接着这个“探究”栏目,教科书设置了一个“归纳”栏目,由学生归纳给出“正数的立方根是正数,负数的立方根是负数,0的立方根是0”等这些数的立方根的特征。最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质。
学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数。本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,分析这些小数的共同特点,通过分析发现有理数都可以化成有限小数或无限循环小数的形式,然后指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来。在此基础上可以指出,像 等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念。教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义。接下去,教科书根据不同的标准对实数进行分类,揭示实数的内部结构。随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化。教科书通过几方面的例子说明了这种一致性和发展变化。首先,教科书通过探究在数轴上画出表示 的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的、平面上的点与有序实数对也是一一对应的;接着,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子说明,有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算、任何一个实数可以进行开立方运算)等。
与原教科书相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习),说明了平面内点与有序实数对一一对应以及在实数范围内的平移变换等;从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际出发,先讲算术平方根,再将平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开方运算,加强对估算的要求等。
三、教学目标和教学重点、难点分析
(一)、本章教学目标
1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;
3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化;
4.能用有理数估计一个无理数的大致范围。
2、单元教学的重难点:
教学重点:
1、平方根和算术平方根的概念。平方根是开方运算基础,是引入无理数的准备知识。平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,而且直接影响到二次根式的学习。。算术根的教学不但是本章教学的重点,也是今后数学学习的重点。在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。
2、立方根的概念与性质及求法。立方根是奇次方根典型类型,掌握立方根是理解的n次方根的基础。由于学习了平方根的概念的基础上学习立方根的概念,学生比较容易接受,但平方根和立方根的性质区别较大,性质掌握的好坏决定了求解立方根的能力,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上。
3、无理数和实数的概念。引入无理数使数域扩充到实数域,初中的所有数的运算均在实数范围内进行的。无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。要让学生掌握关于有理数的运算律和运算性质再实数范围内仍成立,这是中学数学的基础。
教学难点:
1、平方根与算术平方根的区别于联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难。
2、立方根的唯一性及负数立方根的意义。由于平方根的学习,学生容易错误的得出立方根与平方根的结论相似,因此要对比讲解两者的区别:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。
3、无理数和实数的理解。无理数和实数比较抽象,尤其是无理数不能像实数那样具体描述出某个数的特点,在学生思维中想象不出它的存在,借助实数和数轴上的点一一对应,注意通过具体数加以解释。实数抽象程度较高,学生对实数意义有所了解就可以。
四、单元教学思路及策略:
(一)加强与实际的联系
本章内容与实际的联系是非常密切的。例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等。因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开,例如算术平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的,再如用有理数估计无理数的大小也是紧密结合实际进行的。编写时,将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算。
(二)加强知识间的纵向联系
本章内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,本章编写时,注意加强知识间的相互联系,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节“平方根”“立方根”在内容上基本是平行的,因此,编写 “立方根”这节时,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的"相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移。
(三)留给学生探索交流的空间
根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程。例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知正方形的面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知正方形的边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根有些感性认识的基础上归纳给出这个概念。再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、负数和0的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式。
三、几个值得关注的问题
(一)把握教学要求
本册书对于某些内容采用提前渗透、逐步提高的编写方式。例如,对于平面直角坐标系,在第6章“平面直角坐标系”中研究了平面内的点与有序数对的对应关系,其中点的坐标都是有理数,在本章将把点的坐标由有理数的情形扩展到实数范围,并建立平面内的点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础。
对于平移变换,教课书在第5章“相交线与平行线”中安排了一节“平移”,探讨得出“平移前后的两个图形的对应点的连线平行且相等”等平移变换的基本性质,又在第6章“平面直角坐标系”中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是有理数的情况。在本章,由于建立了点与有序实数对的一一对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索平面图形的几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础。
本章还通过一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的“二次根式”一章中还要继续研究。
另外,本章也提前渗透了一些数学思想和方法。比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点。这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究。
综上所述,本章教学时要注意把握教学要求,以一种发展的、动态的观点看待教学要求,不能要求一次到位。
(二)发挥计算器的作用,加强估算能力的培养
使用计算器进行复杂运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力。提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求。为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容。因此,教学中可以结合具体内容,综合利用各种途径培养学生的运算能力。
(三)重视人文教育
无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑。无理数的发现经历了一个漫长而艰苦的过程,在发现无理数的过程中,体现了人类为追求真理而不懈努力的精神。因此,教学时可以结合无理数的发现,挖掘数学知识的文化内涵,使学生感受丰富的数学文化,开阔他们的眼界,增长他们的见识。
另外,本章编写时注意加强与实际的联系,在选择素材时,力求选取学生感兴趣的和富有时代气息的实际问题。例如,本章选择了我国神舟5号载人飞船取得圆满成功的素材,通过这个素材可以使学生从数学的角度更多地了解航天知识,培养学生的民族自豪感和爱国主义情操,激励学生更加努力地学习,这样使学生在学习数学的同时,也得到了人文方面的教育。
初二数学教学工作计划 篇3
一、制定计划的目的
为使学生学好当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识。
二、教材内容分析
本学期数学内容包括第一章《勾股定理》、第二章《实数》,第三章《图形的平移与旋转》,第四章《四边形性质探索》,第五章《位置的确定》,第六章《一次函数》,第七章《二元一次方程组》,第八章《数据的代表》。
第一章《勾股定理》的主要内容是勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。
第二章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。
第三章《图形的平移与旋转》主要内容是生活中一些简单几何图形的平移和旋转。简单几何图形的平移是本章教学的重点,简单图案的设计是本章的难点。
第四章《四边形性质探索》的主要内容是四边形的有关概念、几种特殊的四边形(平行四边形、矩形、菱形、正方形、梯形)的性质和判定以及三角形、梯形的中位线,其中几种特殊四边形的性质和判定是本章教学的重点,推理证明是本章的难点。
第五章《位置的确定》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。
第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。
第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。
第八章《数据的代表》主要讲述平均数和中位数、众数的概念,会求平均数和能找出中位数及众数。
三、学生情况分析:
初二(1)班共有学生44人,从上学期期未统计成绩分析,及格人数分别为5人,优秀人数分别为0人,与其他几个平行班比较,优秀生及格生都少,另外这两个班的学生中成绩特别差的比较多,成绩提高的难度较大。在这样一个以少数民族为主的学生群体中,学生的数学基础和空间思维能力普遍较差,大部分学生的解题能力十分弱,特别是几何题目,很大一部分学生做起来都很吃力。从上学期期末统测成绩来看,成绩最好是78分,差的只有几分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到70多分每个分数段的人数都差不多,这就给教学带来不利因素。
四、教学目标
1.正确理解二次根式的概念,掌握二次根式的基本运算,并能熟练地进行二次根式的`化简。
2.掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。掌握二次根式
,初二数学教学工作计划
4.理解相似一次函数的概念,掌握一次函数的图像和表达式,学会用一次函数解决一些实际问题。
五、教学措施及方法
1.成立学习小组,实行组内帮辅和小组间竞争,增强学生学习的信心及自学能力。
2.注重双基和学法指导。
3.积极应用尝试教学法及其他新的教学方法和先进的教学手段。
4.多听听课,向其它老师借签学习一些优秀的教学方法和教学技巧。
六、本学期教学进度计划
第一周:第一章《勾股定理》
第二周:第二章《实数》
第三周:第二章《实数》的复习和第三章《图形的平移与旋转》
第四、五周:第四章《四边形性质探索》。
第六周:第五章《位置的确定》。
第七周:第六章《一次函数》,介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。
第八周:第七章《二元一次方程组》,要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。
第九周:第八章《数据的代表》和总复习。
第十周:综合复习和训练。
七、本学年教学成绩目标:
在本校,平均分、优生率、及格率都必须保持一、二名,坚决不能到第三名;五大老山比必须争一保二。
以上计划从制定之日起执行,若有不妥之处,请学校教务处给予指正,并督促执行。
20xx年9月20日
初二数学教学工作计划 篇4
一、指导思想
教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。,学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。在
学习能力上,学生课外主动获取知识的能力较差,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯 注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的"习惯,主动纠正(考试、作业后)错误的习惯,部分学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
三、教学目标
1.知识与技能目标
学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2.过程与方法目标
掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能
力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学 类比思想。
3.情感与态度目标
通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到
数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养 成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教学措施
1.作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2.营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3.写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
4.加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
5.成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
6.组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
7.搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
初二数学教学工作计划 篇5
【学习目标】:
1、通过具体实例,了解定义、命题的意义,会区分命题的条件(题设)和结论,会把命题改写成如果,那么的形式。
2、通过具体实例,了解真命题、假命题的意义,能通过具体例子理解反例的作用,知道利用反例可以判断一个命题是错误的。
【课前预习】
课前阅读教材P114P115内容,自主完成下列问题:
1、定义的一般叙述形式是什么?
2、什么是命题?命题有几部分组成?
【课内探究】
一、自主探究:依据课前预习的结果,独立完成下列问题:
1、观察与思考中提到的三个概念,它们在叙述形式上有什么共同点?
2、在给某一事物下定义时,要抓住事物的。
3、思考:你能说出学过的几个定义吗?进一步体会定义的一般形式。
二、合作探究,小组合作完成下面的问题。
1、命题必须是一个表示的语句,也就是说命题要么是肯定一个事物,要么是一个事物。
2、共同学习,思考:
(1)在用如果,那么引领的命题中,如果引出的部分是,
那么引出的部分是。
(2)像例1中的第(3)题这样概括比较精炼的"命题,在寻找命题的条件和结论时,为了表述的完整,在不改变原意的基础上,应该对内容加以适当的扩充。
如:同位角相等,两直线平行。
条件:
结论:
(3)例1中的命题都是正确的吗?哪个是错误的,为什么?
总结:①命题二者如何区别?
②要说明一个命题的错误性,可以通过举的方法加以推翻。
如:两个锐角的和是钝角。
三、训练提升:
①指出下列命题的条件和结论:.
(1)如果两个角相等,那么它们是对顶角;
(2)若ab,bc,则a
(3)全等的两个三角形面积相等.
②判断下列命题是真命题,还是假命题,如果是假命题,举一个反例.
(1)若a2b2。,则a
(2)同位角相等,两直线平行;
(3)一个角的余角小于这个角.
四、达标检测:
(1)下列语句中,哪些是命题,哪些不是命题?
(1)对顶角相等;.
(2)如果a是有理数,那么a2+1
(3)若a∥c,b∥c,那么a∥b;.
(4)1是质数;
(5)不相交的两条线叫做平行线;
(6)奇数一定是质数吗?
(7)画一个半径是1cm的圆;
(8)任何数的绝对值都是正数.
(2).选择题
①下面的句子,是定义的是():
A.对顶角相等.B.锐角都小于钝角.
C.两点之间的线段长度叫做两点之间的距离.
D.任何一个三角形一定有直角.
②下列命题中,正确的是().
A.对顶角相等.B.同位角相等..
C.内错角相等.D.同旁内角互补.
③下列命题中是真命题的是().
A.两个锐角之和为钝角.B.两个锐角之和为锐角.
C.钝角大于它的补角.D.锐角小于它的余角.
4.把下列命题改写成如果,那么,的形式:
(1)直角都相等;
(2)面积相等的两个三角形全等;
(3)平面内两条直线被第三条直线所截,同旁内角相等两直线平行.