快好知 kuaihz

高一上学期数学教学计划

高一上学期数学教学计划

推荐度:

高一上学期数学教学计划

推荐度:

高一上学期数学教学计划

推荐度:

相关推荐

高一上学期数学教学计划集合9篇

日子如同白驹过隙,不经意间,我们的工作同时也在不断更新迭代中,现在就让我们好好地规划一下吧。那么我们该怎么去写计划呢?下面是小编整理的高一上学期数学教学计划,仅供参考,欢迎大家阅读。

高一上学期数学教学计划1

本学期担任高一xx、xx两班的数学教学工作,两班学生共有xx人,初中的基础参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划

一、教学目标

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验"发现--挫折--矛盾--顿悟--新的发现"这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆,(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1.集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

(3)掌握一元二次不等式、绝对值不等式的解法。

2.函数

(1)了解映射的概念,理解函数的`概念.

(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

3.数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

二、教学重点

1、集合、子集、补集、交集、并集.一元二次不等式的解法

四种命题.充分条件和必要条件.

2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

3.等差数列及其通项公式.等差数列前n项和公式.

等比数列及其通项公式.等比数列前n项和公式.

三、教学难点

1.四种命题.充分条件和必要条件

2.反函数、指数函数、对数函数

3.等差、等比数列的性质

四、工作措施

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过"知识的产生,发展",逐步形成知识体系;通过"知识质疑、展活"迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

2、加强课外辅导,提高竞争能力。

课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

(1)加强数学数学竞赛的指导,提高学习兴趣。

(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

3、搞好单元考试、阶段性考试的分析。

学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

五、目标承诺

1、及格率不低于98%。

2、人平比年级平均高15分以上。

高一上学期数学教学计划2

新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

一,指导思想

加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

二,教材分析

本册教材具有以下几个明显的特点:

1。为学生的数学学习构筑起点

教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

2,向学生提供现实,有趣,富有挑战性的学习素材

教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

3,为学生提供探索,交流的时间与空间

教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

4,展现数学知识的形成与应用过程

教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

5,满足不同学生的发展需求

教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

三,教材的重点和难点

本册教材从内容上看,教学重点是三角形和四边形的性质定理

和判定定理的应用以及一元二次方程的应用。教学难点是对反

比例函数的理解及应用;用试验或模拟试验的方法估计一些复

杂的随机时间发生的概率。

四,教学措施:

1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学

3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

五,时间安排

4月1日——4月20日一元二次方程

5月16日——5月31日反比例函数

6月1日——6月10日频率与概率

6月11日——7月11日复习考试

>高中数学教学计划10

本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的"教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一上学期数学教学计划3

一、具体目标:

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的`一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学……

二、本学期要达到的教学目标

1、双基要求:

在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

2、能力培养:

能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3、思想教育:

培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

高一上学期数学教学计划4

一设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三教学目标分析:

知识与技能:

1结合方程根的几何意义,理解函数零点的定义;

2结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法

情感、态度与价值观:

1让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四教学准备

导学案,自主探究,合作学习,电子交互白板。

五教学过程设计:略

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上学期数学教学计划4

教学目标:

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点:弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程设计

(一)导入新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知,,,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5.,,,,,,,(笔练结合板演)

6.集M中任何元素都是集N的`元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若A,且A≠,则A;

(2)如果,,则.

例1写出集合的所有子集,并指出其中哪些是它的真子集.

解:集合的所有的子集是,,,,其中,,是的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如R,{1} {1,2,3}

②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。不能写成={0},∈{0}

例2见教材P8(解略)

例3判断下列说法是否正确,如果不正确,请加以改正.

(1)表示空集;

(2)空集是任何集合的真子集;

(3)不是;

(4)的所有子集是;

(5)如果且,那么B必是A的真子集;

(6)与不能同时成立.

解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确.与表示同一集合;

(4)不正确.的所有子集是;

(5)正确

(6)不正确.当时,与能同时成立.

例4用适当的符号(,)填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设,,,则A B C.

解:(1)0 0 ;

(2) =,;

(3),∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号(,)填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二)全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即

.

A在S中的补集可用右图中阴影部分表示.

性质:S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则SA={2,4,6};

(2)若A={0},则NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注:是对于给定的全集而言的,当全集不同时,补集也会不同.

例如:若,当时,;当时,则.

例5设全集,,,判断与之间的关系.

高一上学期数学教学计划5

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的.原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的图形特征

(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

过程与方法

(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

高一上学期数学教学计划6

一、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1.集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

(3)掌握一元二次不等式、绝对值不等式的解法。

2.函数

(1)了解映射的概念,理解函数的概念.

(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

3.数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的"通项公式与前n项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

二、教学重点

1、集合、子集、补集、交集、并集.一元二次不等式的解法

四种命题.充分条件和必要条件.

2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

3.等差数列及其通项公式.等差数列前n项和公式.

等比数列及其通项公式.等比数列前n项和公式.

三、教学难点

1.四种命题.充分条件和必要条件

2.反函数、指数函数、对数函数

3.等差、等比数列的性质

四、工作措施

抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一上学期数学教学计划7

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

基本情况:12班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,后进生约xx人。

14班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,后进生约xx人。

2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的"计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

高一上学期数学教学计划8

一、学情分析

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二、教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。

2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3、信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的"力量,对数学的本质作进一步的理解。

4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

5、新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三、教学任务与目的

1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。

通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=logax互为反函数(a>0,a≠1)。通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。

3、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4、利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5、以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。

6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。

根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四、教学措施和活动

1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

高一上学期数学教学计划9

一、指导思想:

(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析:

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

三、教学目标与要求

必修1,主要涉及两章内容:

第一章:集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章:函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

第三章:函数的应用

函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4:主要涉及三章内容:

第一章:三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章:平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章:三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上学期数学教学计划6

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的.区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节教学内容师生互动设计意图

提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例例1设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质①A∪A = A,②A∪ = A,

③A∪B = B∪A,

④ ∪B,∪B.

老师要求学生对性质进行合理解释.培养学生数学思维能力.

形成概念自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.

应用举例例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.

例1解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2.提升学生的动手实践能力.

归纳总结并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ =,A∪ = A,

③A∩B = B∩A,A∪B = B∪A.学生合作交流:回顾→反思→总理→小结

老师点评、阐述归纳知识、构建知识网络

课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华

备选例题

例1已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2集合A = {x | –1

(1)若A∩B =,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B与A∩C =同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B和A∩C =同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解.将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C =相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B与A∩C =,同时成立,∴满足条件的实数a = –2.

例4设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:高一上学期数学教学计划  期数  期数词条  教学计划  教学计划词条  高一  高一词条  上学  上学词条  
教学计划教学计划

 九年级政治教学计划

九年级政治教学计划范文五篇时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,现在就让我们好好地规划一下吧。什么样的计划才是好的计划呢?以下是小编为大家...(展开)