快好知 kuaihz

高一数学教学计划

高一数学教学计划

推荐度:

高一数学教学计划

推荐度:

高一数学上学期教学计划

推荐度:

高一下学期数学教学计划

推荐度:

高一下学期数学教学计划

推荐度:

相关推荐

高一数学教学计划(通用3篇)

时光飞逝,时间在慢慢推演,又迎来了一个全新的起点,不如为接下来的教学做个教学计划吧。相信大家又在为写教学计划犯愁了吧,下面是小编收集整理的高一数学教学计划(通用3篇),希望对大家有所帮助。

高一数学教学计划1

一、基本情况分析

任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

二、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

三、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的"发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

四、教研课题

高中数学新课程新教法

五、教学进度

第一周集合

第二周函数及其表示

第三周函数的基本性质

第四周指数函数

第五周对数函数

第六周幂函数

第七周函数与方程

第八周函数的应用

第九周期中考试

第十十一周空间几何体

第十二周点,直线,面之间的位置关系

第十三十四周直线与平面平行与垂直的判定与性质

第十五十六周直线与方程

第十八十九周圆与方程

第二十周期末考试

高一数学教学计划2

一、内容及其解析

1、内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线

2、解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

二、目标及其解析

1、目标

掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

2、解析

①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

③经历直线的点斜式方程的推导过程,体会直线直线方程之间的关系,渗透解析几何的基本思想。

④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

三、教学问题诊断分析

1、学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

2、学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

3、由于学生没有学习曲线与方程,因此学生难以理解直线直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

四、教法与学法分析

1、教法分析

新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

2、学法分析

改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

五、教学过程设计

问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

问题2:建立直线方程的实质是什么?

[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的`条件用方程表示出来。

引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

问题2.1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

(过与两点的直线的斜率为)

[设计意图]让学生寻找确定直线的条件,体会动中找静。

问题2.2如何将上述条件用代数形式表示出来?

[设计意图]让学生理解和体会用坐标表示确定直线的条件。

用代数式表示出来就是,即。

问题2.3为什么说是满足条件的直线方程?

[设计意图]让学生初步感受直线直线方程的关系。

此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

另外以方程的解为坐标的点也在直线上。

所以我们得到经过点,斜率为的直线方程是。

问题2.4:能否说方程是经过,斜率为的直线方程?

[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

[设计意图]引导学生掌握解析几何取点的方法。

引导学生求出直线的点斜式方程

注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。

问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

[设计意图]让学生初步感受解析几何求曲线方程的步骤。

①设点———用表示曲线上任一点的坐标;

②寻找条件————写出适合条件;

③列出方程————用坐标表示条件,列出方程

④化简———化方程为最简形式;

⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。

例1分别求经过点,且满足下列条件的直线的方程,并画出直线

⑴倾斜角

⑵斜率

⑶与轴平行;

⑷与轴平行。

[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。

注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。

⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。

⑶当直线的倾斜角时,直线的斜率,直线方程是。

⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线直线方程是。

练习:

已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。

[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。

问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。

[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。

将斜率与定点代入点斜式直线方程可得:

说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。

注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。

(2)斜截式方程中的k和b有明显的几何意义。

(3)斜截式方程的使用范围和斜截式一样。

问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。

高一数学教学计划3

一、指导思想

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的.科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学。

二、学情分析及学生情况分析

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新高考我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

三、具体措施

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:高一数学教学计划  数学教学  数学教学词条  高一  高一词条  计划  计划词条  高一数学教学计划词条  
教学计划教学计划

 教学计划

生物教学计划推荐度:开学教学计划推荐度:中班教学计划推荐度:跳绳教学计划推荐度:教育教学计划推荐度:相关推荐【精选】教学计划合集7篇时间过得太快,让人猝不及防,...(展开)