《圆环面积的计算》教学反思
作为一位刚到岗的人民教师,我们的工作之一就是课堂教学,通过教学反思可以快速积累我们的教学经验,那么问题来了,教学反思应该怎么写?下面是小编帮大家整理的《圆环面积的计算》教学反思,欢迎阅读,希望大家能够喜欢。
《圆环面积的计算》教学反思1
《圆环面积的计算》教学反思《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。在本节课上,首先,我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。再通过引导学生主动探究,发现圆环面积的计算方法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系。 其次,我尽可能的赋予丰富的情感因素,用数学的情感去吸引学生,激发他们学习的热情,体会学习数学的乐趣。练习时我也是围绕生活实际,让学生多层次的解决问题,提高学生的应用意识和解决问题的能力。课堂是学生思维成长的土壤,数学课时更应该如此。在课堂评价时,我想了很多鼓励学生的话,学生在肯定和赞赏的语言评价中得到自信和成功的喜悦。这几点都是这节课做得成功的地方。
本节课我感觉还有几个值得探讨的`地方:
1,列举生活中的圆环放在哪里更适合?
2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。
3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。
《圆环面积的计算》教学反思2
同学们例3这道题还有什么不同的方法来解答?
3.14×52-3.14×42
你对这种算法,有什么看法?
我认为这算法是第一种分步计算的综合式
能用综合算式是一大进步,谁还有更简单的方法?
3.14×(52-42)
多简便,只用两步,你们知道这样算的理由是什么?
这里运用了乘法分配律,这种算法是第二种方法的简便计算。
你真会学运用知识,大家同意他的想法吗?(齐:同意)
我还有一种好办法!(学生很兴奋地)3.14×(5+4)!
请你说说你的想法
我是看出来的,52-42=5+4
我们验证一下。
是不是其他的.算式也有这样的规律,请你验证下,比如:62-52是否与6+5相等;102-82是否与10+8相等
我们试了,第一题行,第二题是不行的
我们看出,两数相差1时,行的,差2就有行了
你的意思我明白,但表达上有问题,应该说当两数相差1时,两个算式相等,当两数相差2时,两处算式不相等,我们应该用规范的语言来表达。
那么,请大家算一算,多少?
102-82等于36
36与10、8有什么联系?
36=(10+8)×2
2与10、8有什么联系?
10减8等于2师写公式,你能举例说明吗?我们写了几个算式能证明这处算式成立,52-32=(5+3)×(5-3)122-82=(12+8)×(12-8)
大家是不是都认为这样的算式是成立的?(齐:同意)
那么请你用一句话来概括你们所发现的规律!
[课后反思]
本课的教学任务是引导学生理解圆环面积的计算方法,学会计算圆的面积,而在实际的课堂教学中却不知不觉中让学生经历了平方差公式推导验证的过程,这本来是初中的数学知识,可是无意在小学的数学课堂上生成了,我顺着学生的思路,在师生互动的教学过程中让学生体验了一回发现数学,生成数学的感受。
《圆环面积的计算》教学反思3
首先,给学生创设学习情境,要突出情境中数学的本质问题。创设情境的目的是为了引发学生探究数学问题的兴趣。三个图形的比较,学生通过仔细观察,发现圆环的特点,(引出圆环)激发了学生的.学习兴趣。再通过引导学生主动探究,发现了圆环面积的计算方法。然后通过观察算式的特点引导出另一种方法。学生在此学习过程中,激活了已有的知识和生活经验,沟通新旧知识的联系。情境本身是为探究服务的,所以我们必须要为学生创设一个能提炼出数学问题的学习情境,促进学生主动探究。
然后,创设的学习情境,要能促进学生情感的培养。要尽可能赋予其丰富的情感因素,用数学的情感去吸引学生,激起他们学习数学的热情,体会学习数学的乐趣。都说课堂是学生思维成长的土壤,我们教师的智慧是阳光和雨露,数学课更是如此。在课堂评价时,我想了很多鼓励学生的话,学生在得到赏心悦目的语言评价中得到自信和兴趣。所以,作为一名新时期的数学教师,我们必须有危机感和紧迫感,加强学习,不断改进我们的课堂教学方法,精心、尽心设计好每一堂课。多鼓励学生,让学生去自己探索新知,在学习中体验成功的喜悦。让枯燥的课堂学习变得有趣,使学生主动参与课堂小学习,孜孜不倦的探究新知,感受学习的乐趣。