比的意义的教学反思
推荐度:
分数的意义教学反思
推荐度:
相关推荐
比的意义的教学反思15篇
作为一名到岗不久的人民教师,课堂教学是我们的工作之一,我们可以把教学过程中的感悟记录在教学反思中,那么应当如何写教学反思呢?以下是小编帮大家整理的比的意义的教学反思,欢迎阅读与收藏。
比的意义的教学反思1
今天下午我用老范的课件上了地球公转的地理意义,虽然用前修改了下,依然感觉不顺手。范老师先讲四季和五带,后讲昼夜长短和正午太阳高度的变化,我觉得逻辑顺序不对。正确的逻辑是:由于自转和公转产生了黄赤交角,导致太阳直射点的回归运动,才使得地球表面有昼夜长短和正午太阳高度的变化,这样才使得地球产生了四季更替和五带的划分。
此外,在讲黄赤交角的变化引起热带、温带、寒带的.变化时,我发现学生直观地看动画比用数学的方法证明效果更好。用数学证明,必须讲太阳直射光线和晨昏圈垂直这个知识点。引入的数学知识越多,学生畏难情绪越大。
今天和另外一个地理老师交流了会,发现应该让学生做《新新学案》这个练习。我一直没给学生布置地理家庭作业,以为在课堂上抓住学生就行了。其实,少量的练习还是有必要的。同时,感觉自己不够扎实,学校配备的《新新学案》没放在眼里。水平不咋地,还傲气得不行,自我感觉过于良好了哈。
地球运动这节课,我要好好备课,力争每节课效率最大。
比的意义的教学反思2
作为开学第一课,课本就将方程这样一种重要的数学思想方法凸显出来,可见方程的地位之大,的确,方程对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。方程是一种特殊的等式,而等式的原型便是天平,可惜没找到实物,但不妨碍学生通过已有经验来自我构建。
首先出示5个式子,让学生根据自己的标准分成两类:等式与不等式,用“=”连接的便是等式,用其他如“﹥﹤≠≈”等不等号连接的式子是不等式。然后指出不等式需要到初中学习,今天我们研究等式。观察这几个等式,可以分为几类?指出,已经知道的数叫已知数,不知道的叫未知数,等式里有未知数,便是方程,方程包括在等式里,是一种特殊的等式。这样,算是新课内容结束了。接着根据关系式列方程。
从认知规律来看,本节课的设计完全符合标准,正本反馈,还是有些问题的。
一、学生生活经验不足,导致找不准数量关系。
妈妈买一台电话机,单价116元,付出x元,找回84元。学生的答案让你意象不到,什么形式都有,他们会将这三个数通过一定的符号随意地组合起来,让我哭笑不得。在此之前有一个文具盒与笔记本共20元的问题,还引导学生编成了应用题加以理解,不想还是有问题。所以学校应该斥资建立一个超市,让学生在真实的"生活情境中找到发展的可能,有些数学问题真的只是生活,根本就不是数学。
二、加强备课力度,任何小的问题都不能存在。
还是上面一道题,根据以往列算式的经验,很多学生列成116+84=x,这是可以理解的,正因为我只是在课堂上强调:根据经验,未知数不单独放一边,这样跟算式的区别不大,但效果不很好。我想,将三种式子都板书出来,116+84=x,x-116=84,x-84=116,然后指出我们列方程习惯上不采用第一种,因为将x去掉,不影响答案,而选择二、三两种中的一种,
方程的意义教学反思5
《方程的意义》是一节数学概念课,概念教学是一种理论教学,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。
一、生活引入,注重体验。
数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
《方程的意义》这节课与学生的生活有密切联系,因此在课始,采用学生生活中常见的跷跷板游戏,让学生感受到类似于天平的“相等”和“不等”。这样在结合天平感受这种关系以及最终体会到方程中“相等”的关系时,学生就会感受水到渠成。
二、自主学习,辨析完善。
因为五年级学生已经进入了高年级,是有一定的学习能力的。所以,认识方程中,我选择了放手让学生进行自学。并给出了一定的自学提纲:(1)是方程,我的例子还有。(2)不是方程(可以举例)。(3)我还知道。这里学生自学时是带着自己例子进行思辨性的自学,所以感觉学生理解的还是比较的透彻的,在交流哪些不是方程时,学生理解了等式、不等式、方程之间的关系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。
三、结合实际、理解关系。
根据数量之间的关系列出方程也是本节课的重点之一。同时,这点也是后续列方程解决实际问题的一个基础。所以在出示实际问题列出方程时,我总是追问:你是怎么想的?让学生感受到搞清数量之间的关系是正确列出方程的前提条件。
另外,在练习的设计上,增加一些思维的难度和挑战也是锻炼学生数学思维的一个常态化的工作。
当然这节课还存在一些问题,比如对等式的突出得不够,学生“说”的训练不够,应该给学生更多的表述的机会。
比的意义的教学反思3
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教师根据学生的年龄特征和已有的知识经验,创设了有助于学生自主学习,合作交流的学习情景,让学生在愉悦的探究活动中获得新知识,使学生在知识、能力、情态等方面得到发展。
本课特点:
一、注重学生已有的知识和经验
本节课,教师利用学生已有的知识经验,让学生通过猜测说出商品的价格,再利用学生已有的小数知识。接着,精心安排学生回忆所学长度单位之间的进率和测量物体长度的活动。为探讨小数的意义奠定了基础。
二、给学生创设自主探索的空间
本课创设了让学生借助米尺探讨小数意义的活动,让学生通过独立思考、合作交流,认识一位小数小时十分之几,两位小数表示百分之几……充分调动学生学习的.积极性。课堂上,学生通过之间的观察,思考,了解1分米,3分米,7分米→十分之一米,十分之三米,十分之七米→写成0。1米,0。3米。0。7米的变化,认识以为小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流发现三位小数表示千分之几……直至总结概括小数的意义,学生在自主探索与合作中经历了知识的形成过程,同时在这个过程中锻炼,提高了各方面的能力,全面发展。
比的意义的教学反思4
教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的`情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
比的意义的教学反思5
本节课的内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上教学的,是学生系统学习小数的开始。通过这部分内容的教学,使学生进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。对于小数的意义,实质上小数是十进分数的另一种表现形式,其依据是十进制位值原则。
成功之处:
1.简化了小数的意义的叙述。在教学中淡化了十进分数为什么可以依照整数的写法用小数表示的道理,而是从“小数是十进分数的另一种表现形式”来说明小数的意义,使学生知道“分母是10、100、1000…的分数。在突破这一难点时主要借助了计量单位的十进关系来帮助学生理解。
2.加深对小数意义的进一步理解。教学中对于0.1 0.07 0.009这些数中的每一位上的数字表示的意义及每一个0的意义,让学生进一步加深对小数意义的理解。
3.在教学例1中,适当渗透了小数的计数单位,让学生通过展示课件直观的米尺上表示的份数感知小数的计数单位是0.1 0.01 0.001,为后面教学分散了难点,对于后面的练习在数轴上表示数,还可以起到一石二鸟的作用。
不足之处:
1.由于在例1的`教学中,让学生充分的用语言叙述把1米平均分成10份、100份、1000份,表示其中的几份,可以用分数和小数表示进行的时间较多,导致后面精心设计的练习未能全部完成,时间上比较匆促。
2.对于小数的产生,学生印象不深。
今后,在时间的把握上,还应充分进行备课,分配好各个环节的时间,有效完成教学任务。
比的意义的教学反思6
这一次学校开展了开课活动,在活动中我备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我设计了这节课的教学过程。
本节课教学《方程的意义》,为准备这节课,我研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?
旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。
在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。
课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。
为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。
“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。
在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作。先引入了天平的演示,然后在天平的左右两边分边放置20g和30g的两只正方体、50g的砝码,并根据平衡关系列出了一个等式,20 +30=50;接着把其中一个30g只转换了一个方向,但是30g的标记是一个“?”天平仍是平衡状态。得出另一个等式20 +?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20 +x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”――“含有未知数的"等式”――“方程”。
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中我没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。
虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的)但是通过同桌小组同学的合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。学生对其还存在模糊概念。进一步研究。
创建形象、生动、与生活密切联系的数学情境,使学生经历“数学情境――建立模型――解释应用”这一学习过程,新课程标准指出:要让学生自主经历知识的来龙去脉,努力的过程比成功的结论对学生的发展更有意义。学生最开心的,应该是自己经过探索后的发现。整个教学过程,是一个让学生获得丰富情感体验的过程,是一个学生乐学、好学、积极进行情感体验的过程。
比的意义的教学反思7
于是反复阅读教材,认真研究教参,也网上搜索相关的教学设计,有启迪亦有困惑。最后确定教学思路是通过直观演示,在老师的指导下,让学生观察、比较,总结出一位小数的意义。然后放手学生利用百格图自主探索出两位小数的意义,体现学生学习的自主性。对于三位小数的学习,是学生通过想一想、说一说、议一议等活动,推理出三位小数的意义,然后利用课件的直观演示加以验证。
对于本节课比较满意的地方有两点:
1、充分利用直观演示,构建小数与分数之间的联系。
对于小学生来说,形象直观优于抽象概括,他们的思维是在直观的基础上理解概念的意义。所以,本节课我充分利用正方形、百格图、正方体,通过平均分、涂一涂、数一数的`方法,让学生直观的理解一位小数表示十分之几,由0.1组成;两位小数表示百分之几,由0.01组成;三位小数表示千分之几,由0.001组成。有效的构建了小数与分数之间的联系。
2、做到讲练结合,及时巩固。
课堂不是一味的满堂灌,而是要有动手操作活动或者冷静的思考,我认为除此之外,还要有必要的练习,尤其是数学课,必须做到讲练结合。这样不仅使学生巩固所学知识,也让老师和学生自己了解对知识的掌握情况,以便接下来的学习和教学。
对于本节课缺憾的地方亦有两点:
1、缺乏与生活的联系,对学习小数的意义渗透较少。
小数是日常生活中最常用的数之一。学生离开学校以后,日常生活中几乎可以不接触分数,却不能离开小数。元、角、分的货币自不必说,老式的“几尺几寸、几斤几两”仍在使用。“0.5千克”、“身高1米63”等现代说法都离不开小数。在这方面本节课渗透的比较少。
2、教学设计不新颖。
对本节课的教学,潜意识里存在一种模式,虽然每个环节的学习力度不同,学生学习方式也不同,但是还是感觉没有新意,没有强烈的质疑问题,没有思维的拓展。
对于本节课还有一点困惑:
关于计数单位,曾学过“个”、“十”、“百”、“千”……本节课学习小数的计数单位,教材上这样说的:小数的计数单位是十分之一、百分之一、千分之一……,记作0.1、0.01、0.001……
也曾和几个老师交流过小数计数单位的问题,一直没有确切的答案,希望看到的老师参与讨论。
疑惑:一位小数的计数单位是()。
在这里填是不可以的,按照书上所说填“十分之一”是最合理的。那么能不能说一位小数的计数单位是0.1。
比的意义的教学反思8
六年级上学期数学第二单元是“分数除法”,其中第一小节是:“分数除法的意义和计算法则”。在教学上,“分数除法的意义”好办,因为有分数乘法和小数乘法除法的意义做基础,在课堂上,只要按课文编排稍做解释学生就可明白。
对分数除法计算法则,我对课文编排讲解内容作了一下变动。这一小节有3道例题,分别讲“分数除以整数” 、“整数除以分数” 、 “分数除以分数”。分数除法的计算法则如何得来,如何向学生讲得明白,一直是老师们所苦恼的问题。不讲嘛,似乎是没有完成教学任务,讲吧,即使是老师认为自己讲得很明白,其实学生真正理解吗?我认为,学分数除法的关键是记牢、熟练运用“计算法则”,至于这计算法则是如何得来的,可暂时忽略。我把这3道例题分为两节课讲解。第一课时讲“分数除以整数”,通过例1,“把6/7米铁丝平均分成2段,每段长多少米?”使学生明白,把一个数平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是说“÷2”=“×1/2”,进而,把一个数平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒数、1/3是3的倒数……,从而得出“除以一个数(0除外),等于乘这个数的倒数”。在和学生学习过程中,尽管我用的是课本例1的教学素材,但在教学过程中,我一直有意忽略被除数和除数到底是分数还是整数的问题,只是强调被除数除以除数等于乘除数的倒数。教学完例1,就让学生做相应的练习(强化“除以一个数(0除外),等于乘这个数的倒数”的概念)第二课时,同学生学习例2、例3。课文中例2“一辆车2/5小时行驶18千米,1小时行驶多少千米?”,是详细地讲解了为什么18÷2/5最后可以表达为18×2/5,而我只是根据题意列出18÷2/5后,让学生回想例1的学习过程和分数除法计算法则,让学生自己说出18÷2/5=18×2/5,然后计算得出结果,而省略了中间的讲解过程。接着学习例3“小刚3/10小时走了14/15千米,他1小时走多少千米?”“14/15÷3/10=14/15×3/10”。这两道例题是应用题(但在教材安排中,没有把它放在分数除法应用题范围内),我没有把注意力放在计算法则的推倒过程上,反倒是根据题意为什么这样列式花了些时间。
3道例题学习完(还包括相当量的练习),用了两节课,学生已经掌握了“甲数除以乙数(0除外)等于甲数乘乙数的倒数”的`分数除法计算法则。根据学生情况的反馈,学生掌握这一小节的知识是扎实的。
现在我还在想,既然乘法不强调被乘数与乘数,如,一本书5元,买3本要多少元?既可以5×3,又可以3×5,只要结果是15元就算对,(但我坚持认为5×3和 3×5表达的意义是不一样的,不过,现行教材认为结果一样就行)那么,在学生不太明白算理而只掌握计算方法,在教学上应该是允许的。也许我这样做有点离经叛道,不符合现在的教育教学观念,但要求一定要让学生明白所有算理教学才算成功,似有点不太实际。学生(包括成人)很多时候知道要这样做并且做对了,已经是完成学习任务了,又何必强求一定要“知其所以言”呢?
比的意义的教学反思9
本节课的难点是理解小数的意义。这不仅因为小数的意义具有一定程度的抽象性,学生建构对小数的理解,需要积累丰富的感性认识,经历由具体到一般的归纳过程;而且小数作为一种特殊的分数,它的概念是建立在分数概念基础之上的,但由于学生尚未系统地认识分数,这些显然都会影响到他们对小数意义的理解。针对这一现状,我在教学中充分考虑学生的已有的认知经验,以米尺为桥梁,找出分数与小数的契合点,让学生主动建构小数概念。
三年级下册学生对一位小数有了一定的认识,但时至今日学生难免会有所遗忘,为此,在第一个环节,我借助米尺让学生认识一位小数,并在此基础上去认识两位小数、三位小数....这种无形迁移,不但利于新知识的研究,而且使本来跨度较大的分段的教学融合为一体,从而可以更具体、更有效地帮助学生理解小数的意义。
在第二个“探索两位小数”环节时,教学安排上主要有两个特点:
一是利用米尺强化用“米”作单位的分数表示1厘米或几厘米的思考过程,引导学生由1分米是十分之一米想到1厘米是百分之一米,由1厘米是百分之一米想到几厘米是百分之几米,帮助他们在一系列的数学思考中,突破“用百分之几米表示几厘米”这一学习难点。
二是让学生及时的进行观察、比较、归纳。在把1厘米和几厘米改写成用米作单位的分数和小数后,我要求学生观察、比较写出的分数和小数有什么共同点,并及时总结出:“这些两位小数都表示百分之几”。这样的归纳,使小数的认识过程更加顺畅。
第三个环节探索三位小数时,主要是注意给学生留出更多独立思考、自主探索的空间。引导学生由两位小数类推出三位小数,在类推中逐步明确三位小数的含义。
第四个环节概括小数意义时,我引导学生在观察、比较的基础上抽象概括出小数的意义,并注意引导学生适当拓展已有的认识,帮助他们相对完整的`掌握小数的意义。
在实践运用环节中,我根据学生的知识接受程度的不同为他们设计了三个不同发展层次的练习,由易到难、有具体到抽象,有利于学生从不同角度不断体验、理解小数的意义。不足之处:
1、备课时,备得不够充分,导致课堂上的PPT出现三次明显的错误,我有些犹豫、有些慌张,没有灵活的处理好,这说明教学机智不足。
2、归纳小数的意义是本节课的重难点,按照我们备课组的设想,要想突破重难点,就是要给学生留有充足的时间交流讨论的,但我恰恰在这方面没有做好,流于形式,导致学生在最后一题中理解出现了一些困难。
3、口误较多,语言不够精炼,课堂调控能力还有待提高。一直都是老师在讲,没有注重给时间学生自己探讨,违背新课改的目的。
3、没有与学生进行互动,也没有让学生之间进行交流,上课太死板,没有新意,没有充分的让学生们进行思考。导致这节课很难分辨学生是否已经掌握新知识。
4、在课堂上有的内容重复过多,练习过多,应减少不必要的内容,多空出时间让学生提出问题,和同学及老师一起探讨。把握好与同学之间的交流,让学生自己在探索中掌握新知识。
以上是我的一些粗略的反思,当然我还有很多不成熟的地方,在今后的教学中我会改正自己的不足,根据教学情况对学生做出最适合他们的教学方式,也希望各位老师能给予批评指正。
比的意义的教学反思10
正反比例应用题从教参上看主要是分三个层次教学:1、正比例应用题的教学,2、反比例应用题的教学,3、正反比例应用题解答方法的总结。重点应放在如何判断每题中的两个量是否成比例,成什么比例上。下面我结合自己本节课的`教学谈一谈我自己的体会。
成功之处:
1、开头的复习比较的设计比较到位,层次分明,时间分配得当。
2、总结解比例的方法时能鼓励学生去体验,通过小组的方式去总结解正反比例应用题的方法。
不足之处:
1、例题教学时应让学生讨论分析,多花时间研究数量关系式。
2、教师在教学时不能按步就搬,应能及时抓住学生的闪光点,及进表扬,充分让学生表现自己。
3、改造例1时让学生宏观上思考与例1的区别,这样可让学生更深层次地理解比例应用题的解题步骤。
4、练习题中的表述要清,练习的亮点没有得到很好的拓展。
比的意义的教学反思11
讲授新知
1、教师出示:把一块月饼平均分成2份,每份是它的,这是把什么做为单位“1”,仿照这个例子,还可以把什么看作单位“1”。(学生举出大量的例子)
教师引导学生总结单位“1”可以是一个物体。
2、教师出示:把一米的线段平均分成5份,每份是它的,这是把谁看作单位“1”,依照这个例子,还可以把什么看作单位“1”。(学生举出大量的例子)
教师引导学生总结单位“1”可以是一个计量单位。
3、教师出示:把6只熊猫平均分成3份,每份是6只熊猫的三分之一,这里把谁看作单位“1”,仿照这个例子,可以把什么看作单位“1”(学生举出大量的例子)
教师引导学生总结单位“1”可以是由许多物体组成的一个整体,它们都可以作为“单位‘1’。
自学讨论
1、学生自学课本,教师引导:“把你认为重要的地方划下来,把你不太理解的地方标上去。”
(学生自学课本)
2、学生汇报:
收获比较多。教师随机板书。
疑问可能在“单位‘1’为什么要加上一个引号。
4、教师引导学生强调:单位“1”跟自然数的“1”含义不一样。自然数的“1”只表示1个。实实在在的一个。而单位“1”可以是一个物体,可以是一个计量单位,还可以是由许多物体组成的一个整体。所以:加上一个引号,以示区分。
分数的组成
1、请你自学书中的内容,把你认为重要的地方划下来。把你不懂的地方标上去。
(生自学课本,归纳出分数的组成有分子、分母、分数线三部分。分子表示到这们的几份。分母表示平均分成的份数)
2、同学讨论释疑。
学生在三年级的时候就对分数有了初步的认识,分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义?引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的2个重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。
人类生活与教学之间的联系应当在数学课程中得到充分体现。为此在课前复习的过程中,我设计了学生生活中常见的`几种。抛出一些问题。让学生回答,以此来产生疑问进入课堂。所以就产生了分数。使学生体验到分数是因为生活的需要而产生的,数学来源于生活。
动手实践、自主探索、合作交流是学生学习数学的重要方式,数学活动应当是一个生动活泼的、主动和富有个性的过程。教学中,我让学生通过动手实践、自主探索、合作交流,在这个过程中去体会“在表示分数时,有什么相同的地方?有什么不同的地方?”从而抽象概括出分数的意义。在这个过程中培养学生动手能力,增强自主探索与合作交流的意识,使学生乐学、会学、创造性的学习,培养乐创新的能力。
学生是学习的主人,教师是数学学习的组织者、引导者和合作者。因此,在课堂上,我把一些问题引导出来,而后让学生以小组为单位进行组织学习。并且,在课上,我走下去去帮助需要帮助的,及时为他们解决难题。
从总体上讲,这堂课还算成功,但是,在教学后也出现了一些问题,学生可能对于这抽象的现象不是很能接受,因此,有些学生还摸不着头脑。如何在以后接手班级时更好的教学好《分数的意义》,还希望大家能给我一点好的意见。
比的意义的教学反思12
“比的意义”为九年义务教育小学数学教材内容。这部分内容通常是安排在小学的最后阶段进行教学的。由于比与分数有密切联系,把比的一些最基础知识提前放在分数除法中教学既加强知识间的内在联系,又可以为以后学习其他方面的知识以及比例的知识打下较好的基础。这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除应用题的基础上进行教学的。学生学好这一部分内容将对以后的学习产生深远的影响。
反思:
为了较好实现本节课教学目标,在这节课中遵循学生的认识规律,坚持以学生为主体,教师为主导,训练为主线的原则,在不轻视知识结论的前提下,重视知识的形成过程。让学生在积极主动、愉快和谐的氛围中学习新知、培养能力。教学中我想着力突现以下两点:
1、让学生感受到数学知识与实际生活的密切联系。数学问题是来源于生活,而又应用于生活中的。新的《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。本节课中提供尽可能多的`机会让学生从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。例如:新课引入中,让学生通过做米饭中米量和水量的关系的对比,然后引出课题,使学生平时的生活经验有了一个展示的舞台,加强了数学和生活的联系。通过提供典型材料,让学生说说自己对这些比的理解,既有助于了解学情,找准学生的认知起点,也有助于学生分辨差比与倍比的区别。为新课的教学搭桥铺路,我欣喜地看到学生话多了,兴趣浓了。教学比的意义时,是让学生自己从生活中发现的比的例子,再让学生概括比的意义,紧接着又让同桌学生互说年龄的比身高的比;在巩固练习这一部分,又设计了关于年级足球赛中获奖牌情况的问题以及有关明明家基本情况的联系实际的开放题。
2、让学生探究、发现新知。新的《数学课程标准》指出:“学生是数学学习的主人”。如何让学生真正成为数学学习的主人?教师除了要营造民主和谐的学习氛围、注意激发学生学习的兴趣外,更重要的是要精心创设教学情境让学生积极主动地参与到学习中来,给他们提供自主探索、自我发现的机会。苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈”。本节课中,师生共同概括出比的意义、认识了比各部分的名称、明确了比与除法的关系后,提出了如下问题:“我们已经学习了比的意义、各部分名称以及比与除法的关系,大家回顾一下这些知识,想一想,你有什么发现或有什么疑问请提出来与大家一起探讨。”设想是通过学生独立思考、合作探究,发现或“创造”出新知:比的后项不能是0以及比与分数的关系。事实上,在实际教学中,提出上述问题后,学生思维非常活跃,不仅探索出新知,还提出了“体育比分与我们现在所学的比有什么关系”等问题,学生的创造性、探索精神得到了提升。
3、充分发挥学生的主体作用。数学教学是师生、生生之间的多边活动,教学效果的好与坏,都是以学生是否参与,参与多少决定的,因此在教学中采用恰当的教学手段,充分调动学生的主观能动性,让学生动手、动脑、动口,多种感官参与学习数学知识的活动中来,真正成为学习的小主人。在教学比的各部分名称及比同分数与除法的区别时,安排学生自学知识,让学生自学其内容,掌握知识,并通过交流、理解进行汇报各人的收获,然后再进行一些练习性题目的训练,这样不仅使学生的求知欲由潜伏状态转入活跃状态,有力地调整学生思维的积极性和主动性,还使学生的思维实现两个飞跃:一次是从感性到理性的飞跃;一次是从理性到实践的飞跃。
4、设计开放性练习,拓展学生思维。课堂因为开放,才能激活学生的思维,才能促使学习资源的生成、才会有学生创造的欲望与创造成果的展示。有关足球比赛的题目和最后的开放题,引起了学生极大的兴趣。这些题生活气息浓厚,学生有很强的亲切感。利用开放题充分发展学生的个性特长,进行因材施教,让不同的学生在数学上有不同的发展,同时培养学生的创造性思维和灵活地选择合适信息处理实际问题的能力。
比的意义的教学反思13
《百分数的意义》是第九单元的第一课时,本课的教学重点之一是理解百分数的意义,教学难点是体会百分数、分数、比的联系与区别。
借助例题的学习,我先出示了三名运动员的投篮情况的统计表,统计表中呈现的是每一名运动员投篮次数和投中次数,然后请学生思考:如果你是教练,怎样判断哪名运动员的投篮成绩好些?学生们经过思考马上想出了办法,交流时即刻有学生说出应该通过比较每人投中次数占投篮次数的几分之几来比较。此时,我立即追问学生为什么,学生们联系以前学习的知识说出了理由:因为每一名运动员投篮次数不相同,不能只看投中次数来判断成绩的好坏。应该说这一部分的导入是相当顺利的。
课前我还布置学生去生活中收集一些百分数,所以课上让学生进行了交流。有些学生找到了衣服商标上的百分数,如:100%羊毛;97.4%棉;葡萄汁70%等。为了帮助学生更好地理解百分数的.意义,我请学生们同桌之间先互相说说收集到的这些百分数表示什么意思,然后再请几位学生全班交流,应该说课堂上的学习氛围较好,学生们通过寻找生活中的百分数体会到百分数在生活中的运用,也能更好地理解百分数的意义。
上完本课后觉得不足之处是对于百分数与分数的区别仅仅借助练习十九的第三题是不够的,很多学生还是不理解两者的区别。我想在第二课时中要想办法解决这一问题。
比的意义的教学反思14
课时1课时
所属教材目录冀教版二年级上册第三章第1节
教材分析
要求学生初步认识乘法,掌握乘法所表示的意义和读法。本节内容是在学了100以内加减法混合运算以后学习的,学生有了扎实的加法基础。同时学好本节内容也为学习乘法口诀表打下坚实的基础。
学情分析
学生学习了100以内的连加和连减。对于求几个相同加数的和,有扎实的计算基础。更容易理解和学习乘法的意义。
教学目标
知识与能力目标
初步认识乘法,知道乘法比加法简便,掌握乘法的意义和读法。
过程与方法目标
通过对比法认识乘法,掌握乘法的意义和读法。
情感态度与价值观目标
通过对比法学习,认识乘法比加法简便。提高学生学习数学的兴趣。
教学重难点
重点
理解并掌握乘法算式的意义和读法。
难点
理解并掌握乘法算式的读法。
教学策略与设计说明
通过连加算式的举例引出乘法的`意义。通过对比法理解乘法比加法简便。
教学过程
一,复习旧知(5分钟)
老师在黑板上列出连加算式:
3+4+5=10+20+30=
2+2+2=5+5+5=
师巡视学生计算情况,并适当予以纠正。
二,探究新知(15分钟)
大家观察上面四个连加算式有什么不同的地方?
师引导学生回答后,引出今天的学习内容:今天我们来学习如何更简单的求几个相同加数的和。
师板书:
4+4+4+4+4=
此算式可写成4×5=
3+3+3+3+3=
此算式可写成3×5=
像这样求几个相同加数的和,可以用加法计算,也可以用乘法计算,用乘法计算比较简便。
4+4+4+4+4
5个4相加,可以写成4×5或5×4。
读作:4乘5或5乘4。
三,课堂巩固练习(5分钟)
5+5+5+5+5+5
写成乘法算式是(),
读作()
四,课堂小结2分钟
今天我们初步认识了乘法,学习了乘法的意义和读法。求几个相同加数的和,可以用加法计算,也可以用乘法计算,我乘法计算比较简便。
五,布置作业1分钟
完成本节书上课后题。
板书设计
乘法的认识和意义
4+4+4+4+45个4相加
可写成4×5或5×4。读作:4乘5或5乘4。
我对本节课比较满意,课堂调动了学生的积极性,通过对比法,让学生直观感受乘法比加法简便,学生容易掌握。我最满意的地方是每个学生都积极参与课堂教学,都想上黑板做算式题。本节课总体上达到了我期望的水平,但也有不足之处。在巩固练习阶段,部分学生容易把乘法算式读错。例如:5×6。部分学生读作:五乘六或者5乘6等于30。这些都是错误的读法。原因如下:1,学生把乘法算式的读法和100以内数的读法混淆;2,算式中没有的数想当然地读出来。如果我重新上这节课,我会特别强调乘法算式读法中数字要小写,没有的数不要读。辨别5×6和5×6=30的读法不一样。
比的意义的教学反思15
同课异构能提高教师的教学基本功,对教师的常态课也是一种检验,同时,能与同事取长补短,教学反思:《比例的意义和基本性质》教学反思。通过同事的评课,能发现自身上课存在的问题,特别是习惯性的问题。
本次的上课内容是《比例的意义和基本性质》,我在通读教材的基础上,理清思路,寻找解决本节难点知识的妥善方法,并制作课件。课讲完后,仔细分析:
一、找准知识衔接点,为新知做好铺垫。
比例的意义和基本性质,是在学生学习了“比”后进行的。而“比’是上个学期学习的知识。根据我对学生的了解,他们的大多数会把学过的不相关的东西忘到脑后,因此,先设计了一组复习题,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,并通过求不同比的比值的计算,唤醒他们的记忆,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。
二、相信学生的预习能力,大胆放手,使难点变为平常。
本学期鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕而已,教学反思《教学反思:《比例的意义和基本性质》教学反思》。本节概念性的东西较多,学生的理解水平以达到理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,大胆放手,让学生说,让学生找,这样节省了上课时间,学生的能力也得到提升。
三、练习由易到难,不仅仅为了小测验的满分数量而选取较简单的习题。
每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,我鼓励学生逆向思维,根据一个乘法等式,写出比例,把那个告知学生有多个比例,这样能推动学生积极思考,培养学生的发散思维。
这类题,是书中带花的题,应该选作,而我在这里选用,意在考察学生能否灵活运用新知。同时发现规律:可以把等式左边的`两个因数,作为比例的两个外项(内项),能学出八个比例。最后课堂测验,我出了两个内项互为倒数这个隐含条件,并且使用字母表示的比例式,应该是有较大的难度,也是为了看学生新旧知识的融合情况。
课堂测验看出大多数学生填对了结果是还有20个学生填的是其他两个字母的积。设计的实际应用题,学生也能运用反比例分配的方式解决;还有学生能根据比例的基本性质,列出算式;还有的用比例填空的形式解决了这个问题,挺让我惊喜的,学生的思维很灵动。
本节课存在的问题有:
一、没能及时抓好课堂生成。
课前预设没考虑到学生能提出这样的问题,所以当学生提出问题时,自己的大脑处于抑制状态,根本没听清孩子的问题,还让他说了两遍,我也没能领会过来。如果当时让孩子直接解答出自己提出的问题,那会让老师如醍醐灌顶,这样可能会创造出课堂的亮点,更可能树立这个学生的自己心,激发他学习的热情。可悔之晚矣!
二、高估学生的能力,放松了一个知识点的讲解。
对于解比例,我以为:学生在学好了比例的基本性质后,解比例应该如囊中取物。因此只让学生口述了根据比例的基本性质,求比例中的未知项。因此出现了,未知数写在等号的右边,几个学困生不会解比例。如果加上一个板演,哪怕是只要一步:把比例变成方程,那就不会出现类似的问题。
每一次的课,总会有一些优点,同时会存在问题,只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。
《比例的意义和基本性质》教学反思5
用本课的设计始终围绕教学目标而进行,突出重点,有措施,突出难点有策略,整个教学过程体现了教师为主导,学生为主体的精神,具体而言,有如下两大特色:
1、活了教材,设计者将教学内容分解成20多个问题,每个问题既有侧重,又都围绕着重点来进行,使原先教材上的死知识变成了课堂中的“活问题”,让学生在解决问题中探究知识的形成过程。
2、搞活了课堂。课堂的活有两种形式,一是形式上的活,一是内在的活,即让学生的思维始终处于活跃状态。前一种活是显性的,后一种活是隐性的,比较难以达到,它需要教师对教学内容的深刻理解以及较高的驾驭课堂的能力。本课的活就属于后一种,教师通过指导学生自学、讨论、数量演示等多种方式,来回答教师提出的问题,使学生的思维一直处于活跃状态,故而能事半功倍,较好地完成教学任务。
综上所述,本课的设计体现了一种较高的教学教育观念—教是为了不教。