推荐度:
推荐度:
推荐度:
相关推荐
作为一名人民教师,我们要在课堂教学中快速成长,借助教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的《等式的性质》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
阳光明媚,心情疏朗!
走进教室,看到孩子们的眼睛弯弯的,满含着欢喜。
【课前小思】
今天我们学习的是《等式的性质》。
课前最纠结的是“为何要用等式的性质解方程?”记得我小时候学习的是传统做法——用算式中各部分关系解方程。为什么现在要用等式的性质解呢?就为了和初中衔接?孩子们在备学中也有此疑问,还用了一个成语形容:明明可以用以前知识解决,而且也很简单,为何要多此一举!
课前,我询问了好多人,但总不能很好的理解。
昨天下午,再次修改教案时,问大树老师,他说,其实小学阶段学习的很多知识,学的是一种思想方法,老师不能就为了某个知识点而教。并且也要让孩子明白,学习了某种思想方法,那么以后到了初中、高中、大学,甚至到了社会上都能够灵活的解决问题。
下午的时候,李大也给我举了例子,他说到六年级有了复杂的应用题,解方程时,等式的性质还是很管用的。摘录了聊天记录如下:
绿水:为什么要用等式的性质解方程?
李:为了和初中接轨。
绿水:还有呢?学生认为这样解答不如算术方法简单。而且,他们看不出等式的性质有何深意,我也看不出。
李海东:主要就是这一点,其实没有用数量关系解方便
李海东:是的,我也不喜欢
绿水:请问等式的性质,以后有没有什么深远意义?我想来想去,都不理解。
李:为初中用的,为列方程解复杂应用题服务。
绿水:哦,现在的简单,以后的复杂,现在学习方法,为了后面解决更复杂的问题,是吗?
李:六年级列方程解应用题有些难度比较大
绿水:你能举个例子给我看吗?凸显等式的性质。
李:甲、乙两桶油,甲桶油的重量是乙桶油的3倍,如果从甲桶取出28千克,乙桶加入4千克,这时两桶油的重量相等,甲、乙两桶原来各有多少千克油?做做看,用等式性质好解绿水:两边同时减去X,就好做了,是吗?
李:你列个方程做做看就能凸显等式的性质优越性
绿水:3x-28=x+4,如果用算式方法,比较缠绕,但是两边同时减去X,就方便了,是吗?
李:是呀。
通过不同的交流,我终于有了底了,等式的性质,我来啦!
【课中点滴与思考】
1、从已经经验处,顺藤摸瓜引新知;
今天这节课,本来一开始,我是准备从书本例三的四幅天平图开始的,直接让他们独立思考、小组交流,发现等式的性质。这样开始的弊端是,刁钻的小孩总是喜欢有挑战,有趣的、能发挥出自己能耐问题。昨天备学他们已经看了书本,现在上课又是先看书本的四组天平图,有重复的嫌疑。孩子们不见的感兴趣,我这样寻思着。
后来欣赏了备学,想到了更适合孩子们的一招。
师:昨天,小雨在备学中说,大树,方程这个单元好像我们很容易“吸收”呀!天时也说,我感觉方程这个单元好简单呀!那范老师就来考考大家,请看图(出示教材例四),谁能列出方程?并能说出这里X是多少?
(孩子们听着,兴致高涨着,几乎所有的孩子都举高了手。)
一生列出方程,并说出X等于多少。
师:你们是怎么想的呢?(几乎所有的孩子都举起了手)
小恺:50-10=40,用和减一个加数等于另一个加数;
罗罗:x+10-10=50-10,x=40。
(罗罗是备学比较充分的孩子,她看到问题,能用等式的性质来解决了。)
师:对罗罗的方法有所了解的孩子请举手!(大部分孩子都举手了。)
师:对这个方法有一些自己观点的孩子请来说一说!(一部分孩子依然举着手。)
小岩:在等号两边同时加上或减去同一个数,等式还是成立的。
小彧:其实罗罗的方法就是用了等式的性质。
师:有预见力的孩子,也许听出来了,刚才陆岩说的就是等式的性质。今天这节课我们就来学习等式的性质,学完后,相信大家都会用罗罗的方法来解方程。
(本节课学习的等式的性质,就是为了第二个目标学会解方程服务的,从备学中我了解学生对于解方程已经有了自己的.一套方法,我何不调用他们的已有经验,顺藤摸瓜,引出等式的性质呢!
看似简单的将例题调一调位置,但是此中体现的意义却是不同的。学生因此更信服地去探究表达总结了。)
2、好玩的课堂,展现个性化的魅力
(1)等式性质的另类理解:
孩子们用自己的话语说说对等式性质的理解,宇杰说:我还有一种关于图形对等式性质的理解,一个轴对称图形在相同位置减去相同图形,得到的图形还是轴对称图形。
师:宇杰真会联想,能够从一个知识联系到另一个知识。
(2)个性化理解应用等式的性质解方程
小彧:应用等式的性质,其实就是,如果左边是+25,右边可以抄下来还是+25;左边是-18,右边还是抄下来-18。
小凯:要使等式左边只剩下一个x,就要看它原来是加上多少,还是减去多少。如果它是加上多少,你就减去多少,它原来是减去多少,你就加上多少。
师:真会观察。
小彧:其实这就是相互抵消了。
师:我们看看是不是这样!
小凯:为什么不直接用和减去一个加数等于另一个加数呢?而要这样加加减减。
我正想解释,可是底下还有一两个小手高举着,炜怡:因为在以后的学习中要学习到很复杂的方程,那时候就会用到等式的性质。所以现在要学习。
小彧:而且我认为用等式的性质解方程正确率更高了。
小立:如果把加号变成乘号,要使左边只剩下X,我们是不是就要除以相同的数了?
(3)全课小结时的联想
天豪:今天学习的等式的性质,我想到了以前学习的商不变的规律。感觉它们也是有联系的。
师:我们一起来想一想,不管是等式的性质,还是商不变的规律,其实都是研究不变中一些变化的规律,数学就是这么奇妙,千变万化的数字符号间,还有着不变的规律!
冲冲:我的收获是昨天学习了等式与方程,我知道了方程是特殊的等式,今天学习了等式的性质,正好用来解方程。知识都是相互联系的。
听冲冲这样说,我特别激动,带领底下孩子鼓掌!因为在备学中,冲冲提出的问题是:“方程有性质吗?”学完这节课,冲冲能用联系的眼光看待问题,解决问题,我感到“备学——课堂”犹如相伴孩子思维成长的一段旅程,孩子们思索着,收获着。多好呀!
课堂中,孩子们有自己的一套理解,这样的理解就是一种个性化学习的体现。如果能把这样的体验说出来,与全班分享,课堂就精彩纷呈了。再次看这节课中一些精彩的话语,感觉自己很快乐,像是一个在大海边捡贝壳的小姑娘,而孩子们的精彩,正是我找寻的闪光的贝壳。感谢孩子们,大胆表达,成就了绿树课堂个性化的色彩,愿每日守候。
等式的性质分成两部分进行教学。第一部分教学等式的性质1既等式两边同加同减的问题,第二部分教学等式的性质2既等式左右两边同时乘或除以的问题,中间穿插解方程的教学。
例3的一,二组天平图,平衡的天平两端同时加上同样重量的物体,天平依然平衡,学生把图抽象成等式后,进一步归纳得出“等式两边同时加上同一个数,所得结果依然是等式”。三,四组的天平图,学生通过图发现平衡的天平两边同时减去同样重量的物体,天平依然平衡,将天平图抽象成等式后,进一步归纳总结得出“等式两边同时减去同一个数,所得结果仍然是等式”。最后把两句话总结成一句话,就是等式的性质一。这一节课不仅要学生总结出等式的性质一这个规律,更要在得出规律的过程中,发展学生抽象概括的能力,培养学生把生活中的表象概括,归纳,抽象成数学语言的能力。我在教学例三时,通过一系列问题引导学生,在这个过程中通过板书进行了整理,学生得出规律没有费很大的力气。
应用等式的性质解方程是这节课的重点内容,学生是第一次接触解方程,需要做详细的介绍。在教学例4前,练一练的第一题是一个很好的铺垫。练一练分两个层次,一是复习等式的性质,这里我重点问了为什么右边要加,借此强调等式的性质中的“同时”又问了为什么要加25,借此强调了等式的性质中的“同一个数”。二是为下面的解方程铺垫,问学生X—25+25可以进一步化简成什么。完成这个教学后,就进入例4,先出示天平图,让学生自己列出数量关系式。然后及时设问,这里的X是多少。学生这时候会有两种答案一种是运用等式各部分之间的关系(很少的学生),第二种就是运用等式的性质来解方程,两种方法我没有做对错判断,只是强调要运用今天刚学到的知识来解决这个问题。解方程的过程完全板书,解用红笔写,强调格式。后面的.检验也在黑板上板书,我在开始的时候是要求学生把检验的过程写出来的,以此来强调检验的重要性,效果还好。在教学练习一的第二题的时候,我要求学生先用文字说他们之间的数量关系,训练学生寻找等量关系式的能力, 为后面的列方程解决实际问题做准备。
《等式的性质》这部分内容是在学生已学用方程表示简单情境中的数量关系的基础上,通过天平这一直观教具,引导学生探索和发现等式性质,它是解方程的认知基础,因此学习和理解等式的性质就显得尤为重要。根据教材内容和学情,我将教学重点确定为:掌握等式的基本性质;教学难点为:理解并掌握等式的性质,能根据具体情境列出相应的方程。
一、成功之处
1.游戏热身,点燃热情。
课堂开始,我设计了一个请学生用身体模仿天平的热身游戏,伸开两臂,犹如人体天平,我用给出天平两边不同的重量或是相同的重量,让学生模仿不同的天平状态,学生玩得高兴,学得轻松,他们对天平只要两边重量相等才会平衡加深了认识。
2.先扶后放,研究性质。
在教学中,我将等式的第一个性质作为引导重点研究内容,让学生仔细观察第一个天平图,并说一说:通过图你知道了什么?学生比较轻松观察到:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡,从而发现一个茶壶的重量=2个茶杯的重量。
接着通过动态展示在天平的两边同时各放上一个茶杯,引导学生思考:此时天平会发生什么变化呢?为什么?你是怎么想的?通过一系列不断追问,鼓励学生完整说出自己的思考过程。然后动态再演示这一过程,接着提出不同的问题:如果同时加上两个、三个、五个、六个同样的茶杯,天平会怎样呢?为什么?这样学生有理有据地表述自己的观点。同时引导学生构建出天平与等式之间的联系,将天平上的实物抽象到等式的计算中,从而一步步引导学生发现“等式的.两边同时加上或减去同一个数,等式的两边相等”的性质。
然后再放手让学生通过观察、理解、操作,共同探索得出等式的第二个性质:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。我尽可能地放手,给予适时地点拨,总结。在“为什么等式两边不能除以O?”这个问题时组织学生交流,使他们理解:O不能做除数。
3.开放练习,激活思维。
为了激活学生思维,我将巩固练习设计为思维开放的题目,使学生积极主动思考。我设置了以下题目:
(1)如果2x -5=9,那么2x =9+( )
(2)如果5=10+x ,那么5x -( )=10
(3)如果3x =7,那么6x =( )
(4)如果5x =15,那么x =( )
先让学生回忆等式的性质,再利用等式的性质填空。对于不同层次的学生,他们的思维广度和深度是不同的,做到了使不同的学生在数学上获得不同的发展。
二、改进之处
1.在等式性质的探究中,为了加强对比,我觉得应该再增加在天平的两边同时加、减、乘、除去不同质量的物品,让学生发现这时天平不平衡,通过这一层次的实验,从而让学生清楚地加深加上对“同一个数”的认识,进行更深入地思考。
2.对于等式的性质应不仅仅停留在说的这一环节,而应在实验的基础上让学生灵活地运用字母表示数的知识,将等式写出来加以表示,这样不仅有效地训练学生数学的思维,还使学生对等式的性质有了更深一层的认识,为以后的学习做好铺垫。
总之在课堂上我逐渐放手,让学生经历观察、实验、猜测、推理、验证的过程,使他们不断加深对等式性质的理解,同时为后面学习解方程奠定良好的基础。
本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解方程的基础。在以前的教材里,学生是应用四则运算各部分之间的关系解方程,这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《数学课程标准》从学生的长远发展和中小学数学教学的衔接出发,要求小学阶段的"学生会利用等式的性质解简单的方程。反思本节课的教学,有以下成功之处:
1.在直观情境中,按“形象感受——抽象概括”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果,有利于学生的直观感受。又在学生观察、分析等式变化的基础上及时抽象、概括出等式的性质,使学生进一步积累了数学活动的经验,初步发展了抽象概括能力。
2.循序渐进地教学等式的性质。在引导学生发现等式的性质的过程中,逐步推进:先从不是方程的等式过渡到方程,再由加同一个数过渡到减同一个数。这样的设计符合学生的认知规律。
3.在学习和探索的过程中,注意培养学生独立思考的能力,在独立思考的基础上培养交流的能力与合作意识。
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,《等式的基本性质》教学反思。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。
第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论,教学反思《《等式的基本性质》教学反思》。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。
然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。
通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的.,而是真正取决于所放物品的质量是否相同。
这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
课后随笔这是一节有关于中小学衔接的数学课:等式的性质,在教学中采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手、动脑、操作、观察、归纳出等式性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
以下将教学过程作简要回述:
整个教学过程主要分两部分:第一部分是等式的性质,采用体验探究的教学方式,首先由老师演示天平实验,分别在天平两侧放上砝码使天平保持平衡,并把实验转化为数学问题并列出数学式子;再让学生所列的式子,提出问题:通过天平实验所得到的式子你能联想到等式有什么性质?由学生独立思考归纳出等式的性质一和性质二,然后再把等式的性质抽象为数学的符号语言并表示出来。最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?第二部分是对等式性质的运用。通过两个例题和两个练习,揭示等式性质的对称性和传递性,为后面学习一元一次方程和二元一次方程组作好了铺垫。
回顾本节课,觉得在一些教学设计和教学过程的把握中还存在着一些问题:
1、不能正确的把握操作的时间,导致延迟了大概5分钟下课。作为教师所演示的`实验操作的难易程度,应和所给的讨论时间成正比。这样既保证了实验的有效性,又不至于浪费时间。在探索等式性质中用天平演示实验之后留给学生思考和讨论的时间并不是十分充足,使活动没有真正起到最初的效果。而其后在训练的时候留给学生思考和解决问题的时间也略显不足。
2、教学中没能注重学生思维多样性的培养。数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究等式性质1的过程,老师是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。
3、在课堂上对突发的事件处理不够果断,对学生的回答没有及时反馈。如在练习2中要求学生同时根据等式的两个性质编一个新的等式时,学生的解答出现了多种结果,老师的点评和引导所花的时间过多(约5分钟),打乱了下一步的安排。
4、对于性质1中的“式子”未能做到合理的解释。
5、对于性质的运用,采用老师问学生答的形式,缺少学生板演的环节,没有照顾到全体学生的参与。
6、缩减了小组合作学习研讨的时间,没能体现小组合作的优势。
关于《不等式的性质》一节的教学,我在集备组的多次建议修改下,把不等式的概念、不等式的性质、运用不等式性质解简单不等式这三个内容整合到本节课;基本思路是:用比较数的大小引进不等式的概念;利用表格对不等式两边进行运算来探索不等式的性质并展开小组讨论加深对不等式性质3的认识;运用不等式的性质把不等式转化为的形式。本节课用的是平行班,强调的是实用性。从新课到练习都充分调动了学生的思考能力。小组讨论又锻炼了学生的创造性和合作性;为后续学习解一元一次不等式打下了一定的基础。自己在这节公开课吸取的经验是:
1、充分准备是保证。从怎么引入怎么引导学生填写表格及探索性质都进行充分的准备,写了份大概的讲话稿,在脑海里反复演练,以帮助克服紧张情绪。
2、专业术语阐述不够清楚,需要加强。部分学生会对数量关系中的“不大于”、“是负数”、“是非负数”等数学术语理解不清,我只是从字面上给予解释,并没有对学生为什么出错进行深究,导致学生在复习回顾环节出错又在新课后的巩固练习出错。
3、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到 化作之类的题目都卡住了。
4、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,但后来听教研员说这里才是展示教学个性的地方,并且可以训练学生的数学符号语言能力。
5、注意学生的反应。这个班平常回答问题等都比较积极。但这次他们也是第一次经历,学生也显得紧张,我没能缓解他们的紧张情绪,课堂气氛调动不出来。本节课是第九章的第一节课,内容安排的有点多,对于中下学生的"学习是不利的,但我没有在课堂及时的调整。准备在后续的课当中再反复训练,循环提高。公开课是对我的锻炼,不仅仅是教学能力,更是心理素质的锻炼。
总的来说,本节课勉强完成了教学任务,我要进一步学习的还很多很多,我会多多向前辈老师学习。
最近我上了一节初一新教材的数学公开课:等式和它的性质,在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手、动脑、操作、观察、归纳出等式性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
以下将教学过程作简要回述:
整个教学过程主要分三部分:第一部分是等式的概念,我采用“归纳思维模式”教学,第一阶段:创设情境——请同学们举出几个等式的例子;第二阶段:形成概念——让学生观察这些等式的共同特点,想一想什么叫做等式;第三阶段:应用概念———让学生识别哪些是等式,哪些不是,并说出为什么?第二部分是探索等式的性质,采用体验探究的教学方式,首先由学生两人一组动手实验,要求分别放上砝码使天平保持平衡,并填写实验表;再让学生观看电脑演示的书中71页的实验,提出问题:通过天平实验,要使天平平衡,你觉得应注意什么?你能联想到等式有什么性质?由学生独立思考归纳出等式性质1,然后让学生观看书中71页第二个实验的电脑演示,并引导学生从天平左右两边的数量关系上思考归纳出等式性质2,最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?第三部分是拓展与提高,通过两个填空,揭示等式的对称性和传递性为后面学习一元一次方程和二元一次方程组作好了铺垫。
教学反思:
这是我在片区教学中上的一节数学公开课,经过片区小组的听课、评课活动,给了我很大的启发,也使我在教学中多了些体会和思考:
《等式和它的`性质》这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题:
1、不能正确的把握操作的时间,没有达到应有的学习效果。作为教师所提出的实验操作的难易程度,应和所给的讨论时间成正比。难一点的操作问题,应多给点时间,反之则少给点时间。这样既保证了实验的有效性,又不至于浪费时间。但在探索等式性质1中用天平实验的时间过长(用了10分钟),而且总是停留在一个层面上,使活动没有真正起到最初的效果。
2、学中没能注重学生思维多样性的培养。数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究等式性质1的过程,我是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。
3、对于性质1中的“式子”未能做到合理的解释。
4、对于性质的运用,我采用老师问学生答的形式,没有照顾到全体学生的参与。
改进方法:
1、个一小组做完实验后(时间控制在2分钟)可以采取四人活动,让学生自己先去想你从实验中发现了什么,联想到了什么,由组长做好每一个组员的发言记录,通过观察思考、交流讨论体会实验中所能发现问题的多样性,由每组派代表回答,从学生回答中,引导学生归纳等式性质1。这样的合作讨论,能使学生讨论的答案不再统一在教师事先限定的框框中,学生讨论的结果可能会有很多是老师始料不及的,但也可能是精彩独到的。
2、在归纳等式性质1中,对于“式子”的问题可适当做引导。学生虽然没有学过整式,但却可以在第一个屏幕演示——两边同时加上一个三角物体的天平实验中,提出:两边加上的这个物体它的重量我们知道吗?有可能会是多少?对于这个
物体的未知重量我们可以如何表示呢?从而引出把这个未知量当成一个式子看的概念
3、对于等式性质的应用,可让学生在独立思考前提下进行小组活动,这样能使每个学生都能发挥自己的作用,每个学生都有表达和倾听的机会,每个人的价值作用都能显现出来,在这个过程,学优生得到了锻练,而学困生也在互补、互动中学到了知识,促进了发展。
有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。
《等式的性质》一课教材设计了四个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。在用算式表示实验结果的同时,使学生知道“等式两边同时加减或乘除以同一个数(除数不能为0),等式仍然成立”这一规律。
由于等式的性质是解方程的基础和依据,所以我在教学时给予特别重视,活动一、用天平直观图演示的操作,给学生提供认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。活动二、用课件进行演示,在活动一的基础上引导学生自主探究,合作交流,自己总结等式的性质。基础训练中,分别安排了在天平上填运算符号和数字,在课堂练习中填数的模拟解方程练习。练习时,让学生看懂题目的要求,特别是第1题中的训练题说一说是怎样想的,也就是根据等式的基本性质做的,打实基础为下面用等式的基本性质解方程做准备。
本课讲完之后,感觉学生的学习效果还不错,我认为运用图片加演示进行教学,对于学生的学习是很有帮助的,提出精炼的思考问题和适当的点拔会增加课堂的教学效率,紧凑的.教学环节使课堂教学更加顺畅。尊重学生,给学生更多的发言机会,暴露他们的思维,把思维留给学生是最好的教学方式,注重了学生上课语言表述的规范与准确,书写的工整。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
在得出等式性质时,是一步一步引导学生去发现的,学生掌握的不错,但讲的还是多,不如直接独立完成,小组讨论发现,总结时强调一下,如何去记住这个性质,而不是背下来。
课堂一定要关注学生,认真思考的学生在课堂上总会带给你一些惊喜,如果你忽视了,就不仅仅是错过了那一次精彩。这节课在学生总结等式的性质的时候,有一个学生将书上的"等式的性质中“所得的结果仍是等式”替换成“数量不变”,这也是我在备课时所想的,能不能替换一下,所以我在备课本上写了“结果不变”,可是没过一会,这个同学又举手了,说自己的“数量不变”不能替换书上的话,当然也包括了我的“结果不变”,因为等式两边同时加或减去同一个数(0除外),结果肯定会发生变化的。就是因为这样一个能不能替换的问题,学生对等式的性质的理解肯定会更好。
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的.内在联系,整体上把握、发展学生的辩证思维。
在运用符号评议的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。
让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
这是一节有关于中小学衔接的数学课:等式的性质,在教学中采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手、动脑、操作、观察、归纳出等式性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
以下将教学过程作简要回述:整个教学过程主要分两部。
第一部分是等式的性质,采用体验探究的教学方式,首先由老师演示天平实验,分别在天平两侧放上砝码使天平保持平衡,并把实验转化为数学问题并列出数学式子,再让学生所列的式子。提出问题:通过天平实验所得到的式子你能联想到等式有什么性质?由学生独立思考归纳出等式的性质一和性质二,然后再把等式的性质抽象为数学的符号语言并表示出来。最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?
第二部分是对等式性质的运用。通过两个例题和两个练习,揭示等式性质的对称性和传递性,为后面学习一元一次方程和二元一次方程组作好了铺垫。
回顾本节课,觉得在对教学设计和教学过程的把握中还存在的一些问题:
1、不能正确的把握操作的时间,导致延迟了大概5分钟下课。作为教师所演示的实验操作的难易程度,应和所给的讨论时间成正比。这样既保证了实验的有效性,又不至于浪费时间。在探索等式性质中用天平演示实验之后留给学生思考和讨论的`时间并不是十分充足,使活动没有真正起到最初的效果。而其后在训练的时候留给学生思考和解决问题的时间也略显不足。
2、教学中没能注重学生思维多样性的培养。数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究等式性质1的过程,老师是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。
3、在课堂上对突发的事件处理不够果断,对学生的回答没有及时反馈。如在练习2中要求学生同时根据等式的两个性质编一个新的等式时,学生的解答出现了多种结果,老师的点评和引导所花的时间过多(约5分钟),打乱了下一步的安排。
4、对于性质1中的“式子”未能做到合理的解释。
5、对于性质的运用,采用老师问学生答的形式,缺少学生板演的环节,没有照顾到全体学生的参与。
6、缩减了小组合作学习研讨的时间,没能体现小组合作的优势。
等式的性质,是在学生掌握了方程的定义,并在小学已经学过了一些等式的基本性质的基础上教学的。本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时加或减同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,去说。促思,开启学生思维的`“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
本节课我采用使用导学案的教学方式,让学生朗读本节课的学习目标和学习重难点,让学生带着问题来学习本节课的知识点。引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
课堂开始通过找规律引入课题,激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。
接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
练习的设计上以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解
数学的价值,增进了对数学的.理解。同时使学生体会数学中的分类讨论思想。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受不了高难度的题目,因此在设计导学案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。
一、反思备课
备教材:
备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。
“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。
备学生:
为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。
备教法:
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的`定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。
在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。
恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。
整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的数学思想方法。
二、反思上课
进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。
对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。