作为一名人民老师,我们的工作之一就是课堂教学,对教学中的新发现可以写在教学反思中,那么什么样的教学反思才是好的呢?以下是小编帮大家整理的《解方程二》教学反思,仅供参考,欢迎大家阅读。
本节主要教学目标是使学生通过结合具体实际问题的分析与解决,导出形如ax±b=c和ax±bx=c形式的方程,并结合原有旧知——等式的性质推导出解法步骤,同时利用这些方程来解决一些实际问题,丰富学生的解题方法,提高学生解决问题的能力。
通过几课时的教学与练习,学生在掌握方程解法上没有问题,说明学生对等式的性质掌握的比较扎实。但在运用方程解决一些实际问题时,部分学生表现出缺少一定的分析习惯和缺乏一定的分析能力,造成在解决问题(特别是一些例题的变式题)时产生较多错误。
通过前后练习的比较、观察,发现产生上述问题的主要原因在于学生在练习时偏重模仿和记忆,缺少具体分析的意识。从而造成在碰到一些变式题时就明显缺少解题策略,学生在读题后首先想到的不是去思考题中有怎样的数量关系,而是在记忆中极力搜索“这个问题以前有没有讲过?或跟哪个问题是一样的?”等旧痕迹。然而这些变式题的解答难就难在它与例题有密切的联系,但又有区别。如果学生不能找到其中的区别和练习,光靠模仿和记忆,那就很难正确解答了。因此,在教学中教师要注意学生重模仿轻分析的学习方式,在练习中要加强数量关系的分析,注重学生对解题思路的表述。教师要强调学生读题后先分析并写出等量关系,每个实际问题的解答过程中都要设计等量关系的分析与交流,从潜意识中使学生重视起对问题的分析与判断。一开始学生可能在分析、判断等量关系时还会模仿例题的形式,因此在学生对基本类型有了一定的感悟后,要有针对性的出现变式题让学生来解决,使其在认知冲突中进一步感悟先分析、判断等量关系的重要性。但同时教师也要十分清楚的认识到寻找等量关系对于课改后的六年级学生来讲,并不是一件容易的事,除了缺少一定的意识外,更重要的是缺乏一定的分析能力。产生这种情况的原因主要有两个,一是在新教材的编排中,在六年级前很少涉及甚至没有安排过等量关系寻找的内容。正是由于教材中忽视了这方面内容的安排,也就引起了第二个原因——教师和学生都忽视了寻找等量关系能力的培养。等到六年级要大量具体涉及到时,就发现学生很不适应了。如何提高学生寻找题目中等量关系的能力,就成了教学的一个重点,也是一个难点。为了提高学生等量关系的.分析能力,除了如前所述要加强意识培养外,还应在具体方法上加以指导。而用线段图来表示题目中的条件和问题,是一种非常有效的提升学生分析、判断等量关系的方法,教材在例题分析中就先借助了线段图来分析,从而帮助学生找出题中的等量关系。在实际教学中我深深地体会到了画线段图来表示条件和问题,从而形象的表示出等量关系的有效性。同时,在教学中不能因为问题简单或赶进度而忽视画线段图表示条件和问题的环节。一开始学生可能由于以前缺少一定的训练而显得有些不适应,但经过几次的努力后,学生就能很快提高作图能力,从而有助于等量关系的寻找。
综上所述,在列方程解决实际问题的教学中,教师首先要注意学生学习方式的培养,从偏重模仿和记忆中逐步纠正过来,逐步建立具体分析的意识。其次是要培养学生用线段图表示题目中条件和问题的能力,借助线段图的表示形象的表现出相关的等量关系,提高学生寻找等量关系的能力,从而进一步提高学生列方程解决实际问题的能力。
一、认知基础的“顽固性”
心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。
以前教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,比较两种思路:第一种方法是把未知数x优先从背景中筛选出来,依据四则运算各部分之间的关系求出x的值;第二种方法用“结构性观点”去看待方程,着眼于其所表明的.等量关系,体现了方程思想的本质,较好地解决了中小学关于方程解法的衔接问题。《数学课程标准》也明确要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。那么,教材编排的价值是不容置疑的,即不能因为学生思维的轻车熟路,而忽视新知的教学,忽视学生数学思想的进一步提升。利用关系式这种方法解方程书写较少,形式简单,但教学时总碰到差生不理解关系式也记不住关系式,因此在解方程时因想不起关系式而不会解。这几星期的教学,我发现孩子们还是比较喜欢学的,学得也不错,教材利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。教材又通过天平平衡原理过渡到等式的性质,从而利用等式的性质教学解方程,使得解方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,学得不错,但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。我发现用等式性质教这类方程,比较麻烦,学生学起来有一定难度。
二、两种方法形式上的相似引发学生思维的惰性
第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。
方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。
创造性地使用教材,是教师的主导作用的体现。本课时教材在使用时至少有三处贯穿了这样的思想。教师这个“教练”、“导演”应该引导学生充分利用其课文内在的资源,使其发挥最大的作用。如:
(1)开始引例“图示”的.内容,让学生用其素材编题。
(2)本例解题过程回答题中两个未知量的解答环节。
(3)通过让学生自编用整体思想解答的方程。
这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的能力有非常大的作用,对学生课上反思、课上内化知识的能力提高。作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导。
最近课堂上学习了《解方程》,是以等式的基本性质为基础来解决的。过去在小学教学简易方程,方程变形的依据是加减运算的关系或乘除运算的关系。这实际上是用算数的思路求未知数,但学生到了中学又要另起炉灶,引入等式的基本形式或方程的同解原理来学习解方程。现在,根据《标准(20xx)》的.要求,从小学起就引起等式的基本性质,并以此为基础导出解方程的方法。新课程数学教学这样安排体现了“瞻前顾后”的道理,更加注重知识的迁移和联系,使得小学的知识要与初中的知识更加的接轨。
教材中分为5个例题,分别是不同类型:x±a=b;
ax=b;
a—x=b;
ax+b=c;
a(x±b)=c,这几个类型层次依次递进,难度由简到难。其中例1不仅是教授x±a=b类型的解方程,还要让学生理解“方程的解”、“解方程”两个概念。刚开始时学生不易区分,但随着后面例题的讲解,并且在解方程的过程中,学生慢慢理解并内化能区分开这两个概念。
通过几天对解方程的练习,大部分学生对解方程的目的以及检验的方法和步骤都有了较好的掌握,也能分清该利用哪个等式性质来解方程。但是在课堂练习和改作业时,发现部分学生还有一些问题存在:
一、用方程来表示较复杂的数量关系学生出现困难,是通过我的帮助列出方程,应及时让学生巩固方法。
二、对于例3形式的解方程,学生还容易出错,如32—x=45,6÷x=3这样的方程,x前面是“—和÷”,学生不好理解为什么方程两边同时“+x”或同时“×x”,我又借助天平讲解:如果两边同时减32或同时除以6,依然算不出x,如果同时加x或同时×x,然后就能变成x+a=b或ax=b的形式,再利用所学方法进行解方程就可以了。这个类型还需要加强训练,让学生能快速区分开来是加数还是要加一个含有未知数的式子。
三、解方程时学生丢步骤,如:2x+6=18这样的方程,学生都知道第一步要等式两边同时减去6,得到“2x=12”,但这一步有部分学生会直接写成“x=12”,说明还需强调2x是一个整体,第一步解完后并不是最后的解,还需让等式两边同时除以2才能得出。
四、检验时学生的步骤丢三落四较多,或丢掉“=方程右边”;
或丢掉最后一句话“x=2是方程的解”。
《简易方程》这单元是本册的重点,解方程又是本单元的一大难点,所以后面的教学时,我除了让学生观察方程中未知数的位置和前面符号来解方程外,还应要求学生说得清,能讲清楚理由,从而在理解变形依据、过程的基础上掌握所学方程的解法。
今天上了解方程(二)的内容,感觉没什么明显的精彩地方。学生由于有了关于加减的等式的性质的了解,在通过例题中两组方程的观察,适当提醒学生联系前面学习的等式的性质,很自然的.就能得出有关乘除的等式的性质。
只是在让学生举例的时候,没有学生能想到同时除以0,结果是怎样的。只能由自己向学生提出问题,简单讨论后,很快想到除法中除数不能为0,因而得出同时除以一个不为0的数的范围。
计算中有较多的问题,特别是很多学生对于小数的乘除法计算,有很多的错误,需要加强巩固训练。
今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。
一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的`方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
三、本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
四、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
五、学生对于方程的书写格式掌握的很好,这一点很让人欣喜。
总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待。
有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。
本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。
基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的.基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”, 这可真是越变越复杂。
值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,你们觉得是按加减乘除法各部分之间的关系教好呢,还是按等式的性质教学好呢?
义务教育课程标准实验教科书(人教版)的七年级数学上册的第二章《一元一次方程》,其主要学习目标为:1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型。2、了解解方程的基本目标,熟悉一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴含的化归思想。3、能够“找出实际问题中的已知数和δ知数,分析它们之间的关系,设δ知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。4、通过探究实际问题与一元一次方程的`关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。显而易见,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点和难点。
新课程标准教材不仅考虑数学自身的特点,还遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
本教科书是以一元一次方程的解法为主线,χ绕合并、移项、去分母、去括号几大步骤依次展开的,并把解决各种实际问题也逐一分散到这四大类型中,这样看起来,线索明朗,难点分散,有利于减轻学生的学习负担,其实不然,教学实践证明一元一次方程的解法,对学生来说并不很难,除了由于不细心造成符号错误,去分母项问题,教学中并有遇到多大阻碍,而对于利用一元一次方程去解决实际问题则是学生最感头痛之处。如何理清问题中的基本数量,如何找出相等关系列方程,往往使学生们抓耳挠腮,束手无策。所以像本章的知识显得系统性不强,不利于师生的引生的引导和探索,难以让学生体会建立数学模型的思想,不利于提高分析问题、解决问题的能力。
我在教学中认识到这一点,就在七年级两个班中进行对比实验:(1)班按照新课程标准教材编排顺序进行教学,(2)班则打破编排顺序,先集中学习一元一次方程的解法,然后再讨论其应用。并把实际问题按照问题情景进行分类:和(差)倍问题、工程问题、行程问题、浓度问题、等积变形问题、销售中的盈亏问题、商品打折问题、利率问题、方案设计问题等,引导学生探索类问题的本质,探究其内在联系,构建模型。
本章学习结束后,我们分别对一元一次方程的解法和应用进行对比测试。测试结果表明:对一元一次方程的解法,两种教学方式的效果相关无几,而对利用一元一次方程解决实际问题,两种教学方式的效果则有较大差异,打破教材编排顺序进行教学的(2)班成绩明显高于(1)班。按照标准教材编排进行教学,强调把握全部问题的通性通法,而七年级学校的学生大多数对此感觉难以理解和把握。(1)班学生大多反映解决实际问题时思·不清晰,对于不同的问题不知如何区别对待,而(2)班学生则反映遇到不同的实际问题,脑海中马上就显现出此类问题的通性通法,解决起来有章可循,真正体现建立数学模型的思想。
由此可见,教材一个问题情景的创设,一个知识篇章的教学模式的设计,是否具有科学性和有效性,是否适合各个地方各个层次的学生的学习心理特征,有待在教学实践中进一步的探索和研究。因此,我认为在此课程中,教学不是教“教科书”,而是经由“教科书”来教,即教科书不再是不可触犯的“圣经”,而是教学活动的参考依据,是教学活动展开的一种文本和载法。所以教师不能只执行教材,而应根据学生现有的知识基础,灵活地、创造性地利用教材,并且在课堂实施中根据学生的情况,灵活地调整并生成新的教学流程,使课堂处于不断的动态变化之中,这样才符合新课程的要求。
有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。
本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:
1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。
2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。
基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的"关系推导出X的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的`原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”, 这可真是越变越复杂。
值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,我觉得按加减乘除法各部分之间的关系教好呢,而用等式的性质教学好比较复杂。
教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数,《解方程(二)》教学反思。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形,教学反思《《解方程(二)》教学反思》。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的`情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。
尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。
在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:
本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的`掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。