推荐度:
推荐度:
推荐度:
相关推荐
身为一名到岗不久的人民教师,我们需要很强的教学能力,借助教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!下面是小编帮大家整理的《小数乘小数》教学反思,欢迎阅读,希望大家能够喜欢。
《小数乘小数》这部分内容对五年级的学生来说有点难度,它主要考察学生的运算能力和细心程度。在上完这节课后,我进行了认真的反思,给我的启发:
1、要处理好怎样点小数点。
我认为书上的.例3、例4、例5这3道例题可以统一到一个知识点来教学。在教学时,教师要先让学生回顾整数乘整数的方法,然后在此基础上,扩展到小数乘小数,把小数也看成是整数,这样每位学生都会做整数乘法,最后,在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。但在学生实际练习中,我也发现了有一小部分学生小数点仍点错,究其原因,不难发现学生不会数小数点,他们把小数的乘法与加法混淆在一起,因此,教师要对这些学生再复习一下小数加法的方法。这样,每位学生都会点小数点了。
2、在教小数乘法中要结合生活实际创设情境,解决实际问题。
在上例3时,要结合学校的宣传栏,让学生先用米尺去量一量宣传栏的长、宽,再让学生想一想,怎样去配宣传栏上的玻璃,学生马上知道要通过乘法计算来确定玻璃的大小。
这节课设计的意图是力求让学生通过“探索”,自主地发现规律。教师再作适当的指导。
我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。
一、教材分析
“小数乘小数”是本单元的一个教学重点,小数乘小数这部分的知识,是在学生学习了小数乘整数的基础上进行教学的。小数乘小数的计算在日常生活中以及进一步学习中都有广泛的应用,小数乘小数即是小数乘、除法的重要组成部分,学生学习本节课有利于学生完整的掌握小数乘法的计算方法及运算定律的理解,提高应用四则运算提高解决简单问题的能力。本课的重点和难点都在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
二、亮点
1、创设情境——激发兴趣
由于计算教学枯燥无味,所以学生对计算教学的内容在学习时缺乏热情和兴趣,对计算的练习备感烦躁。因此,提高学生对计算学习的兴趣在本节课的教学中显很重要。课一开始我首先为学生创设了一个“计算比赛”的情境:超市里橘子搞特价,5.4元每千克,照这样计算,班主任王老师买了4千克应该付多少钱?学校午托部买了40千克应该付多少钱?对这样的教学情境,学生感到自然、亲切,同时解决的是自己眼前的问题,学习兴趣倍增。很快计算完,此处巧妙的复习了小数乘以整数的计算方法。紧接着,又说道,班内学习委员张明的妈妈要过生日了,她用零花钱给妈妈买了0.8千克橘子,应花去多少钱?学生列算式已经不是难点。
2、发挥学生的主体作用。给予学生更多的自主探索学习的时间,因为小数乘法计算方法的依据是因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的"小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。
3、关注后进生,对于学生所出现的这些错误,我觉得说算理对于学生计算方法的掌握,逻辑思维能力的培养的确具有积极的作用。然而说算理一定要建立在学生对计算过程和方法感悟的基础上,使学生对算理真正内化,理解实现对所学知识的“意义建构”。教学中准确把握学生的学习状况,学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说算理、板演改错题的机会,真正做到因材施教。
三、不足之处:
1、列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的小数位数,顾此失彼的错误频出。
2、该进位不进位,该对齐数位不对齐的错误还是屡见不鲜。
四、改进措施:
1、加强计算的练习,特别是加强口算题卡的练习,强化口算能力。
2、加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。
小数乘小数是在小数乘整数的基础上进行教学的。那天正好是家长开放日。课前,我让学生进行预习,当时我自己也不确定孩子们能不能发现乘数的小数位数和积的小数位数间的关系。经过第一个例题(苏教版页例7)的数理讲解后,我直接就让孩子们练习67页的“试一试”。在得出答案后,让他蜜察算式中,两个乘数的小数位数与积的小数位数有什么联系?把问题抛给了学生,让他们自己去发现。因为有家长在听课,孩子们的.表现欲特强,加上他们已预习过,所以很容易发现了规律。在发现规律后,我再引导他们用四个字归纳计算方法:看、数、点、化。看,是指把两个乘数看成整数;数,是指数出乘数中一个有几位小数;点,是指从积的右边起数出几位,点上小数点;化,是指小数末尾有0的要根据小数的性质进行化简。通过练习,发现孩子们掌握的较好,所以说,很多时候,我们教师应该做孩子们一个学习上的伙伴,而不是那个喋喋不休的“老夫子”!
教材分析
本节课是学习小数乘小数的计算方法,它是在已学的整数乘法和小数和整数相乘的基础上进行教学的,其教学生长点是整数乘法。它既是小数除法学习的基础,与是小数四则混合运算和分数小数四则混合运算学习的基础。然而,按整数乘法相乘后怎样得到原来的积,则是需要经历一个严密的推理过程,教材安排两次探究活动;
第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;
第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,立进行推理。在两次探究后比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算方法。
学情分析
本班有51名学生,其中男的有27人,女的有24人。从上学期的期末检测来看,大部分学生基础知识掌握得比较好,但也有10位同学基础比较差,最简单的.整数乘法都不会计算。另外学生的自主学习能力一般,有合作学习的习惯。同时,在学习小数乘小数之前,学生们已经学习了整数乘法和小数与整数相乘,这对学习小数乘小数已有了些基础,现在来学小数乘小数应该一不很难。
教学目标
1、让学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确地进行相关的计算。
2、 让学生在探索计算方法的过程中进一步增强探索数学知识的能力。培养学生的推理能力和概括能力。
3、 让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的兴趣,增强学好数学的信心。
教学重点和难点
本节课的教学重点是让学生通过主动探索,理解并掌握小数乘小数的计算方法。难点是理解把小数乘法转化成整数乘法后确定积的小数点位置的道理。
今天教学《小数乘小数》,教材以计算布告栏玻璃面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。从昨天的教学中我发现在理解算理时,没有学生借助情境。因此,教材虽然符合从生活中发现数学、应用数学及解决数学问题的要求,情境本身的设置对于小数乘小数的算理推导过程有用,但对学生而言并无实质的作用。小数乘小数与小数乘整数相比较,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。因此,我把帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,发现比较简单的确定积的小数点的方法为本课的重点和难点。
课中以1.2×0.8让学生自主探索。在结果是9.6与0.96的争论中,学生运用估算的方法,把因数0.8保留整数计算,1.2×1=1.2,准确的积肯定小于9.6,不可能是9.6。于是,很多学生想到了把小数乘整数的`算理迁移到了新知,因数中小数位数变化引起积中小数位数变化证明了0.96是正确答案。再以2.9×7.12、0.24×1.5 细化过程,巩固算理。借助学生的竖式,有学生把2.9写在上面,有学生把7.12写在上面,从对比中学生明确数位多的写在上面比较简单。小数点对齐的竖式与末尾对齐的竖式对比中,学生理解了我们实际上是看作712×29计算的,整数乘法是个位对齐,小数乘法转化成整数乘法来计算的也应该是末尾对齐,小数加减法要求小数点对齐,小数点的确定中再一次巩固算理。
通过这样的三道计算题,学生基本计算障碍已被扫清,关键是如何准确确定积的小数点的位置?如果只是用计算为强化训练,课堂单调枯燥,索然无味,学生无兴趣可言,一些计算策略、方法也无法更有效的形成。通过设置有思维的“陷阱”的练习,突出重点难点关键点,真正激起学生思维的震撼,亲身体验计算方法的生长过程,从而有效形成计算的技能。
练习一:根据182×23=4186请你快速找出积的小数点应该点在哪里?
1.82×23 18.2×2.3 1.82×2.3 0.182×0.23
让学生根据整数乘法的积,确定小数乘法的积的小数点,再一次理解算理,并可以减少学生的繁琐计算,在快速回答时,学生体验和感悟到确定积的小数点位置的简便方法。
练习二:182×23=4186,如何让等式182×23=4.186成立呢?
再次根据整数乘法的积,确定小数乘法的积的小数点,不过这次是根据积的位数,确定因数的位数。在学生的不同答案中,学生又一次感悟到因数中小数的位数与积的位数之间的关系,是学生思维认识上的一次升华。
于是,让学生回顾刚才的探索,对于小数乘小数,怎样迅速的确定小数点的位置?你有什么经验?交流中,对于小数乘小数的计算方法的得出非常自然,学生用自己的理解归纳得很到位。
练习三:1.25×3.2=4,想一想,这一题做对了吗?
学生又一次争论着:肯定错了,因数中一共有3位小数,而积是整数。错了,虽因数中一共有3位小数,但积应该是两位小数,因为5×2末尾有0。引导学生通过计算,再观察算出的结果。学生满脸惊讶!接着讨论:这个积的小数部分的三位小数哪里去了呢?
本节课我不是用大题量训练来强化计算方式,而是从练习设计上触动学生的思维,关注学生数学思维的有效生长。
作业反馈:作业本上的练习难度大,课堂上重视竖式计算,对于口算,后进学生脱离竖式有点茫然,需老师的指点。对于※号题,根据138×25=3450,使下面的等式成立。( )×( )=3.45 ( )×( )=345。个人感觉对于第一节课后就是这样有思维的练习,一部分学生还真有点不知所措。
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,有大部分的学生根据前面的小数乘整数的计算方法迁移归纳出以下的内容:看因数一共有几位小数,积就是几位小数。其实这两种方法都是一致的,其实质就是根据积的变化规律而归纳面成的。因而我本课的重点分为以下三点进行。
一、知识的迁移过程。
通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05*4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2*0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2*0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2*0.8=0.96.在这个环节,学生初步感知了积的.小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
二、知识的归纲过程
我们知道,当一个知识点刚刚有一个兴奋的苗头的时候,教师如果就顺着这个苗头直接就说出结果的话,那效果可能不明显,因为这个时候学生还没有把概念真正形成,因为他们只是通过一道0.8*1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7*0.3和0.56*0.04,让学生在利用0.8*1.2所得的方法进行计算,然后排列出0.8*1.2因数一共有位小数,积0.96也是两位小数,6.7*0.3中因数一共有两位小数,积也有两位小数,0.56*0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
三、知识的巩固过程
1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29*0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29*0.07,先29*7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
2、突出口算为小数乘法简便运算打基础。
如在课堂上布置了0.25*4、0.125*0.8、0.25*40、12.5*8、1。25*8等多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!
这是学生第一次接触小数乘法,我大胆改变教材没有使用课本上的情景图,安排了复习积变化的规律,通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
1、突出积变化的规律
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,同时运用小数乘整数的意义进行验证,感受规律的正确性。本文由一起去留学编辑整
2、突出竖式的书写格式。
有了前面对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小100倍。
3、突出小数的位数的变化。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的.。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,而让我觉得困惑的是,在前面这一部分我让学生发现规律,运用规律去口算,然后去笔算,一切都在我的安排之中,教学的过程是流畅的,顺利的引导学生进行知识的迁移和扩展,学生掌握的情况也是很好的,但过多的暗示是否束缚了学生的思维,如果不铺垫,直接出示小数乘整数的问题让学生思考,对于培养学生的思维能力是否好些?
课的下半部分,学生对计算已经不感兴趣了,有几个孩子已经开小差了,事后调查得知,他们觉得问题太简单了,就是积的小数位数的问题,只要移动小数点位置就行了,计算没有什么多大意思.学生说得是实话,最近学的都是计算,都是讨论计算方法,而计算方法的发现有时不需要让他们经历发现、探究的过程,更多的是老师的提醒和告诉,充满好奇心的孩子怎么喜欢被动的接受呢。看来计算的教学还需要教师将练习的形式变的丰富些,吸引学生的眼球和大脑。
《小数乘小数》是五年级上册第一单元的内容。这一内容的教学重点是小数乘法的计算法则;教学难点是小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
小数乘小数是在学生学习了小数乘整数的基础上进行教学的。我以为这一知识点学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况却并不尽如人意。在课后练习中,学生出现错误的现象比较多:1、方法上的错误:例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别扩大10倍,这样乘得的积就会扩大100倍,为了使积不变,最后还要将积缩小100倍;但是在计算的过程中,部分学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题。还有的学生把小数乘法与小数加法点小数点的方法混淆在一起,或者只看其中一个因数的小数位数。2、计算中关于0的问题;部分学生在积的末尾有零时,先划去0再点小数点;部分学困生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。3、计算上的失误:因数的数位较多时,个别学生直接写出得数(如2.15×2.1的竖式下直接写出4.515,没有计算的过程),做完竖式,不写横式的得数等。
面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:本单元不是我想象的.那么简单,既要注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。为此,我决定从以下几方面加以改进:
1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。
2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。
五年级的学生已经具备了一定的分析判断的能力,对身边与数学有关的事物有较强的好奇心和探索精神,我抓住他们这一特点,在学习过程中,多采取小组合作探究的教学方法,充分体现学生的学习积极性和主动性,极大地激发了学生的学习热情。
在进行“验算”环节,首先让学生判断例题中计算的对与错,再说出自己的理由,鼓励他们大胆思考,然后小组合作讨论,激发有创新的思路。经过交流讨论,同学们有的根据条件来说“鸵鸟的速度是非洲野狗的1.3倍,所以鸵鸟的速度应该快,而不是比56小!”说得极有道理,这是上节课中的一个重要知识点,加入了自己的理解,还有学生补充道:“56乘1.3的积应该比56大,因为一个非0的数乘大于1的数,积比原来的.数大!”教材上也有,但这样的解释更清查明了!更有学生利用上节课“因数与积的小数数位间的关系来解释”,超越教材!
在整节课的学习中,学生能积极的思考,运用发现的规律去解决问题,效果还是比较好的!不足之处在于个别学生在形成技能环节,还需要多练习,还有待提高。
教学片断:
1.出示课本例题7的小明房间和外面阳台的平面图。
提问:从图中可以知道哪些信息?根据这些信息,你能提出什么问题?
预设:小明的房间面积是多少?阳台面积是多少?
生成:房间面积和阳台面积一共是多少?房间面积比阳台面积多多少?
【反思】:学生生成的两个加减问题,在课堂中没有解决,那么意味着学生说出来的这两个问题是无效的。我可以直接问:根据这些信息,你能提出有关乘法的问题吗?
2.求小明的房间面积,怎样列式?
预设:3.8×3.2=小数乘小数怎么计算?让学生说一说准备怎么算。
学生独立完成,一个学生板演(正确的),展示另一个学生的算法(错误的)。让学生分别说说自己计算的想法。
师:两位同学都想到要把小数看成整数来计算,算出积是1216,不同的地方在于点小数点,哪位同学说的更有道理?同学们,我们能不能来估计一下3.8×3.2的积?
生:把3.8看成4,3.2看成3,3.8×3.2≈4×3=12平方米。
【反思】:教材中先要求学生用三种估算的方法,体会房间面积的大小范围。而根据实际经验,学生其实潜意识里觉得估算就是四舍五入法,其余两种估算他们是很难想到的,那么我势必要在这里花较多的时间教授估算的问题,这与本课的重点不符。于是我便把估算设计到了后面,让学生明确通过估算可以初步确定哪个积才是合理的。但是评课的沈老师觉得我这是没有认真解读教材。当然他说的我没有让学生自己来判断121.6与12.16哪个正确的方法,如果估算放在前面教学,让学生结合刚才的`估算就自然而然会判断了。实际上我在之前教学五年级的时候,试过这种方法,学生的回答完全没有我们想的那么好,他们基本不会把估算和计算结果联系起来判断。在平时的计算中,学生往往都是直接计算,而不会先估计,所以我此次设计想让学生在计算的结果上,养成用估算方法初步判断结果正确与否。当然,沈老师说我后面的计算全都没有提到估算,我承认确实是这样,教师需要提高自己的估算意识,这样才能带动学生的估算意识。
3.求阳台的面积是多少平方米?学生独立列式,展示学生的作业。
【反思】:本来我想展示学生错误的答案,可以让课堂冲突性更强。谁知让沈老师觉得我是之前小数乘整数没教好,所以在这堂课还要去强调列竖式时要数位对齐这个旧知。看来公开课需要伪装,我的侧重点完全偏离轨道了。
【教学内容】
苏教版第9册86页例1、87页“试一试”、“练一练”,89页1、2题。
【教学目标】
掌握小数乘小数的计算法则,能正确进行计算,培养学生的推理、概括、估算能力,进一步体会转化思想的价值和新旧知识之间的内在联系。
【教学重点】
【教学难点】
确定积的小数点的位置。
【教学过程】
一、复习:
0.8×3=
说这个算式的意义,回忆小数和整数相乘的方法。谈话:哪些同学有自己的小房间,是什么形状的?导入新课。
(设计意图:回忆小数和整数相乘的方法,为后面概括小数和小数相乘的法则作铺垫。谈话过渡自然。)
二、新授:
1、教学例1。
(1)出示例1:(挂图)
(2)下面是小明房间的平面图,房间长3.6米,宽2.8米。
(2)提问:从平面图上你知道了哪些信息?根据这些信息你会解决什么问题?房间的面积有多大,就是求什么图形的面积,利用什么公式来列式?
房间面积和阳台面积的算式同时列出。
列式后说说和我们以前学的.小数乘法有什么不同?板书课题:小数乘小数
(设计意图:房间面积和阳台面积的算式同时列出,便于一扶一放。)
让学生先估计一下。
3.6×2.8≈ ( )
想:3×2=6(平方米)
4×3=12(平方米)
房间的面积在6-12平方米之间。
还可以怎么估算?
4×2=8(平方米) 3×3=9(平方米) 3.5×3=10.5(平方米)
哪一种估算方法比较好?
(3)猜:列竖式怎样算呢?可以先按整数乘法算吗?
把这两个小数都看成整数,很快计结果。根据刚才的估算,再猜一猜,小数点可能会点在哪儿?
3 . 6 ×10 3 6
× 2 . 8 ×10 × 2 8
2 8 8 2 8 8
7 2 7 2
1 0 0 8 ÷100 1 0 0 8
相乘后怎样才能得到原来的积?
(4)学生讨论得出:
两个因数分别乘10,积就扩大100倍,要求原来的积,1008就要缩小100倍,要除以100。原来的积是10.08。
这个结果与我们刚才猜的和估算的结果是否一致?
(设计意图:先估计得数,然后根据估计的得数猜小数点位置,再用算理验证小数点的位置是否正确,构建知识的形成过程,进一步发挥估算的作用,体现估算的价值。)
这部分内容对五年级的学生来说有点难度,它主要考察学生的运算能力和细心程度。在上完这节课后,我进行了认真的反思,给我的启发:
要处理好怎样点小数点。
我认为书上的例3、例4、例5这3道例题可以统一到一个知识点来教学。在教学时,教师要先让学生回顾整数乘整数的"方法,然后在此基础上,扩展到小数乘小数,把小数也看成是整数,这样每位学生都会做整数乘法,最后,在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。但在学生实际练习中,我也发现了有一小部分学生小数点仍点错,究其原因,不难发现学生不会数小数点,他们把小数的乘法与加法混淆在一起,因此,今后要对这些学生再复习一下小数加法的方法。
小数乘小数本小节是第一单元的一个教学重点,它是在学生学习了小数乘整数的基础上进行教学的。并紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。注重对算理和算法的自主探索。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解决新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8×3.6的结果最大是多少,然后让学生再进行计算。我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
运用规律来解决问题,让学生进一步感悟算理,获得方法。
运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的.习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。
教材小数乘小数的计算方法,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,我分为以下三点进行:
一、知识的迁移过程
通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05×4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.20×8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2×0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2×0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的`小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
二、知识的归纲过程
通过一道0.8×1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7×0.3和0.56×0.04,让学生在利用0.8×1.2所得的方法进行计算,然后排列出0.8×1.2因数一共有位小数,积0.96也是两位小数,6.7×0.3中因数一共有两位小数,积也有两位小数,0.56×0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
三、知识的巩固过程
1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29×0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29×0.07,先29×7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
2、突出口算为小数乘法简便运算打基础。
如在课堂上布置了多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!
由于本人执教苏教版国标本五年级,其中的一篇教学实录给我很大启示,并按照此教学思路在我班进行了尝试,效果很好。下面是我结合范本和自己的教学实践整理的资料,供大家参考和交流。
一、深刻把握教学内容,指导教学设计。
小数乘小数的计算方法,教材中是这样归纳的,先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成,看因数中一共有几位小数,积(指未化简的)就是几位小数。
因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的.依赖旧知识的迁移类推,让学生自主发现和归纳。
二、创设有效的问题情境,促进算理形成。
1.创设什么情境?
《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。
所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。
苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的推导基础,以此知识的生长点作为问题情境是可行的。
因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。
2.怎样让问题情境富有“吸引力”?
小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。
因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。