快好知 kuaihz

因式分解教案

初中数学因式分解教案

推荐度:

因式分解教案

推荐度:

因式分解教案

推荐度:

相关推荐

因式分解教案15篇

作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?以下是小编为大家收集的因式分解教案,仅供参考,希望能够帮助到大家。

因式分解教案1

一、运用平方差公式分解因式

教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

重点运用平方差公式分解因式

难点灵活运用平方差公式分解因式

教学方法对比发现法课型新授课教具投影仪

教师活动学生活动

情景设置:

同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?

(学生或许还有其他不同的解决方法,教师要给予充分的肯定)

新课讲解:

从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

首先我们来做下面两题:(投影)

1.计算下列各式:

(1)(a+2)(a-2)=;

(2)(a+b)(a-b)=;

(3)(3a+2b)(3a-2b)=.

2.下面请你根据上面的算式填空:

(1)a2-4=;

(2)a2-b2=;

(3)9a2-4b2=;

请同学们对比以上两题,你发现什么呢?

事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的`因式分解。(投影)

比如:a2–16=a2–42=(a+4)(a–4)

例题1:把下列各式分解因式;(投影)

(1)36–25x2;(2)16a2–9b2;

(3)9(a+b)2–4(a–b)2.

(让学生弄清平方差公式的形式和特点并会运用)

例题2:如图,求圆环形绿化区的面积

练习:第87页练一练第1、2、3题

小结:

这节课你学到了什么知识,掌握什么方法?

教学素材:

A组题:

1.填空:81x2-=(9x+y)(9x-y);=

利用因式分解计算:=。

2、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

(1)1-16a2(2)9a2x2-b2y2

(3).49(a-b)2-16(a+b)2

B组题:

1分解因式81a4-b4=

2若a+b=1,a2+b2=1,则ab=;

3若26+28+2n是一个完全平方数,则n=.

由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

学生回答1:

992-1=99×99-1=9801-1

=9800

学生回答2:992-1就是(99+1)(99-1)即100×98

学生回答:平方差公式

学生回答:

(1):a2-4

(2):a2-b2

(3):9a2-4b2

学生轻松口答

(a+2)(a-2)

(a+b)(a-b)

(3a+2b)(3a-2b)

学生回答:

把乘法公式

(a+b)(a-b)=a2-b2

反过来就得到

a2-b2=(a+b)(a-b)

学生上台板演:

36–25x2=62–(5x)2

=(6+5x)(6–5x)

16a2–9b2=(4a)2–(3b)2

=(4a+3b)(4a–3b)

9(a+b)2–4(a–b)2

=[3(a+b)]2–[2(a–b)]2

=[3(a+b)+2(a–b)]

[3(a+b)–2(a–b)]

=(5a+b)(a+5b)

解:352π–152π

=π(352–152)

=(35+15)(35–15)π

=50×20π

=1000π(m2)

这个绿化区的面积是

1000πm2

学生归纳总结

因式分解教案2

一、背景介绍

因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计

【教学内容分析】

因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

【教学目标】

1、认知目标:(1)理解因式分解的概念和意义

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

【教学重点、难点】

重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学准备】

实物投影仪、多媒体辅助教学。

【教学过程】

㈠、情境导入

看谁算得快:(抢答)

(1)若a=101,b=99,则a2-b2=___________;

(2)若a=99,b=-1,则a2-2ab+b2=____________;

(3)若x=-3,则20x2+60x=____________。

【初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】

㈡、探究新知

1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

【“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】

2、观察:a2-b2=(a+b)(a-b) ,

a2-2ab+b2 = (a-b)2 ,

20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】

板书课题:§6.1因式分解

因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

㈢、前进一步

1、让学生继续观察:(a+b)(a-b)= a2-b2 ,

(a-b)2= a2-2ab+b2,

20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)

【注重数学知识间的"联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】

2、因式分解与整式乘法的关系:

因式分解

结合:a2-b2=========(a+b)(a-b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)

㈣、巩固新知

1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

(1)x2-3x+1=x(x-3)+1 ;

(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;

(4)4x2-4x+1=(2x-1)2;

(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;

(7)k2+ +2=(k+ )2;

(8)18a3bc=3a2b?6ac。

【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】

2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】

㈤、应用解释

例 检验下列因式分解是否正确:

(1)x2y-xy2=xy(x-y);

(2)2x2-1=(2x+1)(2x-1);

(3)x2+3x+2=(x+1)(x+2).

分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

练习 计算下列各题,并说明你的算法:(请学生板演)

(1)872+87×13

(2)1012-992

㈥、思维拓展

1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】

㈦、课堂回顾

今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

【课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习——总结——学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】

㈧、布置作业

教科书第153的作业题。

【设计思想】

叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。

因式分解教案3

一、教学目标

【知识与技能】

了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

【过程与方法】

通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的"应用能力。

【情感态度价值观】

在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点

【教学重点】

运用平方差公式分解因式。

【教学难点】

灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程

(一)引入新课

我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

大家先观察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他们有什么共同的特点?你可以得出什么结论?

(二)探索新知

学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?

因式分解教案4

教材分析

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的.逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点

重点: 灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

因式分解教案5

(一)学习目标

1、会用因式分解进行简单的多项式除法

2、会用因式分解解简单的方程

(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。

(三)教学过程设计

看一看

1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:

①________________②__________

2.应用因式分解解简单的一元二次方程.

依据__________,一般步骤:__________

做一做

1.计算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成课后练习题

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________

(四)预习检测

1.计算:

2.先请同学们思考、讨论以下问题:

(1)如果A×5=0,那么A的`值

(2)如果A×0=0,那么A的值

(3)如果AB=0,下列结论中哪个正确( )

①A、B同时都为零,即A=0,

且B=0;

②A、B中至少有一个为零,即A=0,或B=0;

(五)应用探究

1.解下列方程

2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

(六)拓展提高:

解方程:

1、(x2+4)2-16x2=0

2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

(七)堂堂清练习

1.计算

2.解下列方程

①7x2+2x=0

②x2+2x+1=0

③x2=(2x-5)2

④x2+3x=4x

因式分解教案6

第十五章 整式的乘除与因式分解

根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

15.1.2 整式的加减

(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

四、提高练习:

1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的.值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

试化简:│a│-│a+b│+│c-a│+│b+c│

小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作 业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》

因式分解教案7

教学目标

1、 会运用因式分解进行简单的多项式除法。

2、 会运用因式分解解简单的方程。

二、教学重点与难点教学重点:

教学重点

因式分解在多项式除法和解方程两方面的应用。

教学难点:

应用因式分解解方程涉及较多的推理过程。

三、教学过程

(一)引入新课

1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y

(二)师生互动,讲授新课

1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

一个小问题 :这里的x能等于3/2吗 ?为什么?

想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习

合作学习

想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0

试一试:你能运用上面的"结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2

等练习:课本P162课内练习2

做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

(三)梳理知识,总结收获因式分解的两种应用:

(1)运用因式分解进行多项式除法

(2)运用因式分解解简单的方程

(四)布置课后作业

作业本6、42、课本P163作业题(选做)

因式分解教案8

一、教学目标

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9 ×13-7/9 ×6+7/9 ×2= ;

(2)-2.67×132+25×2.67+7×2.67= ;

(3)992–1= 。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的.目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

P165的探究(略);

2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)= ;

(2)(a+b+c)= ;

(3)(+4)(-4)= ;

(4)(-3)2= ;

(5)a(a+1)(a-1)= ;

根据上面的算式填空:

(1)a+b+c= ;

(2)3x2-3x= ;

(3)2-16= ;

(4)a3-a= ;

(5)2-6+9= 。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)= a3-a

a3-a= a(a+1)(a-1)

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

因式分解教案9

因式分解

教材分析

因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。

教学目标

认知目标:(1)理解因式分解的概念和好处

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想

1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现潜力立意。

3.寓德育教育于教学之中。

教学方法

1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

教学过程安排

一、提出问题,创设情境

问题:看谁算得快?(计算机出示问题)

(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

二、观察分析,探究新知

(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

板书课题:§7。1因式分解

1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

三、独立练习,巩固新知

练习

1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x—2—1=(x—1+1)(x—1—1)

⑨18a3bc=3a2b·6ac

2.因式分解与整式乘法的关系:

因式分解

结合:a2—b2=========(a+b)(a—b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法正好相反。

问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

四、例题教学,运用新知:

例:把下列各式分解因式:(计算机演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

练习2:填空:(计算机演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

五、强化训练,掌握新知:

练习3:把下列各式分解因式:(计算机演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(让学生上来板演)

六、变式训练,扩展新知(计算机演示)

1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

2.机动题:(填空)x2—8x+m=(x—4),且m=

七、整理知识,构成结构(即课堂小结)

1.因式分解的"概念因式分解是整式中的一种恒等变形

2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

3.利用2中关系,能够从整式乘法探求因式分解的结果。

4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

八、布置作业

1.作业本(一)中§7。1节

2.选做题:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

评价与反馈

1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

因式分解教案10

学习目标

1、了解因式分解的意义以及它与正式乘法的关系。

2、能确定多项式各项的公因式,会用提公因式法分解因式。

学习重点:能用提公因式法分解因式。

学习难点:确定因式的公因式。

学习关键,在确定多项式各项公因式时,应抓住各项的公因式来提公因式。

学习过程

一.知识回顾

1、计算

(1)、n(n+1)(n-1)(2)、(a+1)(a-2)

(3)、m(a+b)(4)、2ab(x-2y+1)

二、自主学习

1、阅读课文P72-73的内容,并回答问题:

(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。

(2)、知识点二:由m(a+b+c)=ma+mb+mc可得

ma+mb+mc=m(a+b+c)

我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样

ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。

2、练一练。P73练习第1题。

三、合作探究

1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、

2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。

3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?

(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:

(1)确定公因式的"数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。

例如:8a2b-72abc公因式的数字因数为8。

(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab

四、展示提升

1、填空(1)a2b-ab2=ab(________)

(2)-4a2b+8ab-4b分解因式为__________________

(3)分解因式4x2+12x3+4x=__________________

(4)__________________=-2a(a-2b+3c)

2、P73练习第2题和第3题

五、达标测试。

1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?

(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

2.课本P77习题8.5第1题

学习反思

一、知识点

二、易错题

三、你的困惑

因式分解教案11

课型 复习课 教法 讲练结合

教学目标(知识、能力、教育)

1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).

2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力

教学重点 掌握用提取公因式法、公式法分解因式

教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。

教学媒体 学案

教学过程

一:【 课前预习】

(一):【知识梳理】

1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.

2.分解困式的方法:

⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.

⑵运用公式法:平方差公式: ;

完全平方公式: ;

3.分解因式的步骤:

(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4.分解因式时常见的思维误区:

提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的.项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等

(二):【课前练习】

1.下列各组多项式中没有公因式的是( )

A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3

C.mxmy与 nynx D.aba c与 abbc

2. 下列各题中,分解因式错误的是( )

3. 列多项式能用平方差公式分解因式的是()

4. 分解因式:x2+2xy+y2-4 =_____

5. 分解因式:(1) ;

(2) ;(3) ;

(4) ;(5)以上三题用了 公式

二:【经典考题剖析】

1. 分解因式:

(1) ;(2) ;(3) ;(4)

分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。

②当某项完全提出后,该项应为1

③注意 ,

④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。

2. 分解因式:(1) ;(2) ;(3)

分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。

3. 计算:(1)

(2)

分析:(1)此题先分解因式后约分,则余下首尾两数。

(2)分解后,便有规可循,再求1到20xx的和。

4. 分解因式:(1) ;(2)

分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,

5. (1)在实数范围内分解因式: ;

(2)已知 、 、 是△ABC的三边,且满足 ,

求证:△ABC为等边三角形。

分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,

从已知给出的等式结构看出,应构造出三个完全平方式 ,

即可得证,将原式两边同乘以2即可。略证:

即△ABC为等边三角形。

三:【课后训练】

1. 若 是一个完全平方式,那么 的值是( )

A.24 B.12 C.12 D.24

2. 把多项式 因式分解的结果是( )

A. B. C. D.

3. 如果二次三项式 可分解为 ,则 的 值为( )

A .-1 B.1 C. -2 D.2

4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )

A.61、63 B.61、65 C.61、67 D.63、65

5. 计算:19982002= , = 。

6. 若 ,那么 = 。

7. 、 满足 ,分解因式 = 。

8. 因式分解

(1) ;(2)

(3) ;(4)

9. 观察下列等式:

想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。

10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:

解:由 得:

即 ③

△ABC为Rt△。 ④

试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。

四:【课后小结】

布置作业 地纲

因式分解教案12

一、案例背景

现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习用心性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。

因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。

二、案例分析

教学过程设计

(一)『情境引入』

情境一:如何计算375×2。8+375×4。9+375×2。3你是怎样想的

问题:为什么375×2。8+375×4。9+375×2。3能够写成375×(2。4+4。9+2。3)依据是什么

【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。

(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。

情境二:分析比较

把单项式乘多项式的乘法法则

a(b+c+d)=ab+ac+ad①

反过来,就得到

ab+ac+ad=a(b+c+d)②

思考(1)你是怎样认识①式和②式之间的关系的

(2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗

【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。

(2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。

(二)『探究因式分解

1、认识公因式

(1)、【概念1】:多项式ab+ac+ad的各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。

(2)、议一议

下列多项式的各项是否有公因式如果有,试找出公因式。

①多项式a2b+ab2的公因式是ab,……公因式是字母;

②多项式3x2—3y的公因式是3,……公因式是数字系数;

③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。

分析并猜想

确定一个多项式的公因式时,要从和两方面,分别进行思考。

①如何确定公因式的数字系数

②如何确定公因式的字母字母的指数怎样定

练一练:写出下列多项式各项的公因式

(1)8x—16(2)2a2b—ab2

(3)4x2—2x(4)6m2n—4m3n3—2mn

【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。

(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。

(3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。

2、认识因式分解

【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解

(课本)P71练一练第1题

(1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是

①。ab+ac+d=a(b+c)+d

②。a2—1=(a+1)(a—1)

③。(a+1)(a—1)=a2—1

(2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系从中你得到什么启发

【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。

(2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维潜力和表达、交流潜力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。

(三)『例题研究』

例1:把下列各式分解因式

(1)6a3b—9a2b2c(2)—2m3+8m2—12m

解:(1)6a3b—9a2b2c

=3a2b·2a—3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)

=3a2b(2a—3bc)(提取公因式)

(2)—2m3+8m2—12m

=—(2m·m2—2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)

=—2m(m2—4m+6)(提取公因式)

【评析】:(1)、因式分解的概念和好处需要学生多层次的.感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再透过不同形式的练习增强对概念的理解例。

(2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生透过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。

(3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达潜力。

本题的易错点:

(1)、漏项:提公因式后括号中的项数应与原多项式的项数一样,这样可检查是否漏项。

(2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“—”号,括到括号里的各项都要变号。

(四)『巩固练习』

练一练:辨别下列因式分解的正误

(1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)

(2)4x2—12x3=2x2(2—6x)

(3)a3—a2=a2(a—1)=a3—a2

解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。

(2)错误,分解因式后,括号内的多项式中仍有公因式。

(3)错误,分解因式后,又回到到了整式的乘法。

【评析】:(1)、这些多是学生易错的,本题设置的目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。

(2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。

(3)、进行多项式分解因式时,务必把每一个因式都分解到不能分解为止。

(4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。

(五)『想一想』:

如何把多项式3a(x+y)—2b(x+y)分解因式

解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)

评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2—a)=—(a—2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。

【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。

初中因式分解教学反思

1、本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这一流程体现了知识发生、构成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等潜力,发展有条理思考及语言表达潜力;

2、分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生带给丰富搞笑的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程;

3、在提公因式方面,学生对公因式的认识不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:

(1)公因式找错;

(2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中内含多项式时,漏掉系数或字母因数),导致因式分解不彻底;

4、由于在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;

因式分解是一个重点,也是一个难点,以上存在问题在以后的教学中有待进一步加强。

因式分解教案13

教学目标:

1、进一步巩固因式分解的概念;

2、巩固因式分解常用的三种方法

3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题

5、体验应用知识解决问题的乐趣

教学重点:灵活运用因式分解解决问题

教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

教学过程:

一、创设情景:若a=101,b=99,求a2—b2的值

利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解

二、知识回顾

1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

(7)、2πR+2πr=2π(R+r)因式分解

2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

分解因式要注意以下几点:

(1)。分解的对象必须是多项式。

(2)。分解的结果一定是几个整式的乘积的形式。

(3)。要分解到不能分解为止。

3、因式分解的方法

提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

4、强化训练

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的"定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

试一试把下列各式因式分解

(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

三、例题讲解

例1、分解因式

(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

(3)(4)y2+y+

例2、分解因式

1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

例3、分解因式

1、72—2(13x—7)22、8a2b2—2a4b—8b3

四、知识应用

1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?

五、拓展应用

1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

2、20042+20xx被20xx整除吗?

3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。

五、课堂小结

今天你对因式分解又有哪些新的认识?

因式分解教案14

教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的.思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.

教学过程:

一、提出问题,得到新知

观察下列多项式:x24和y225

学生思考,教师总结:

(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.

公式逆向:a2b2=(a+b)(ab)

如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

二、运用公式

例1:填空

①4a2=()2②b2=()2③0.16a4=()2

④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

例2:下列多项式能否用平方差公式进行因式分解

①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

解答:①1.21a2+0.01b2能用

②4a2+625b2不能用

③16x549y4不能用

④4x236y2不能用

因式分解教案15

学习目标

1、学会用平方差公式进行因式法分解

2、学会因式分解的而基本步骤.

学习重难点重点:

用平方差公式进行因式法分解.

难点:

因式分解化简的过程

自学过程设计教学过程设计

看一看

平方差公式:

平方差公式的逆运用:

做一做:

1.填空题.

(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是()

A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

3.多项式-1+0.04a2分解因式的结果是()

A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

4.把下列各式分解因式:

(1)4x2-25y2;(2)0.81m2-n2;

(3)a3-9a;(4)8x3y3-2xy.

5.把下列各式分解因式:

(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

6.用简便方法计算:3492-2512.

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________________________________________________________

Xkb1.com预习展示一:

1、下列多项式能否用平方差公式分解因式?

说说你的理由。

4x2+y2

4x2-(-y)2

-4x2-y2-4x2+y2

a2-4a2+3

2.把下列各式分解因式:

(1)16-a2

(2)0.01s2-t2

(4)-1+9x2

(5)(a-b)2-(c-b)2

(6)-(x+y)2+(x-2y)2

应用探究:

1、分解因式

4x3y-9xy3

变式:把下列各式分解因式

①x4-81y4

②2a-8a

2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。为便于种植,他想换一块相同面积的长方形土地。同学们,你能帮助张老汉算出这块长方形土地的长和宽吗?w

3、在日常生活中如上网等都需要密码.有一种因式分解法产生的`密码方便记忆又不易破译.

例如用多项式x4-y4因式分解的结果来设置密码,当取x=9,y=9时,可得一个六位数的密码“018162”.你想知道这是怎么来的吗?

小明选用多项式4x3-xy2,取x=10,y=10时。用上述方法产生的密码是什么?(写出一个即可)

拓展提高:

若n为整数,则(2n+1)2-(2n-1)2能被8整除吗?请说明理由.

教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:因式分解教案  因式分解  因式分解词条  教案  教案词条  因式分解教案词条  
教案教案

 黄河颂教案

黄河颂教案推荐度:黄河颂教案推荐度:黄河颂教案推荐度:相关推荐关于黄河颂教案范文集锦5篇作为一名默默奉献的教育工作者,时常需要用到教案,编写教案助于积累教学经验...(展开)

教案教案

 大班科学教案

《沉与浮》大班科学教案推荐度:大班科学教案推荐度:实用的大班科学教案推荐度:相关推荐【精品】大班科学教案3篇作为一位杰出的教职工,通常会被要求编写教案,教案是保...(展开)

教案教案

 认识东南西北教案

认识东南西北方向的教案推荐度:认识东南西北方向教案推荐度:相关推荐认识东南西北教案作为一名老师,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率...(展开)