快好知 kuaihz

《运算律》教案

《运算律》教案

推荐度:

相关推荐

《运算律》教案15篇

作为一位兢兢业业的人民教师,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。那么什么样的教案才是好的呢?以下是小编整理的《运算律》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《运算律》教案1

温馨提示:

1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。

2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。

3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。

4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

网站客服:3215808601

【教学内容】课本第9-11页例1,课堂活动以及练习三第1~5题。

【教学目标】

1、在计算与解决问题的具体情景中体会乘除法的互逆关系和乘除法各部分间的关系。

2、经历探索发现乘与除互逆关系和乘除法各部分间关系的过程,并有成功探索的体验,培养学生的比较、归纳概括能力。

3、能运用乘除法的关系进行验算和解决简单的实际问题。

【教学重点】在计算和解决问题的情景中探索乘除法的互逆关系和乘除法各部分间的关系。

【教学过程】

一、创设情境,激发兴趣

1、教师出示主题图,谈话引入:同学们,你们去过游乐园吗?今天老师和同学们一起到游乐园玩一玩。请同学们仔细观察游乐园情景图,你都获得了哪些数学信息?

(1)学生说出自己选择的数学信息和数学问题,并列出算式解答。教师板书算式:12×5×4=24012×4=4848÷4=1248÷12=4……

(2)学生认真观察算式,你有什么发现?(3)同学们观察得好,你能观察出乘除法各部分间有什么关系吗?今天我们一起来探讨乘除法之间的关系。板书课题:乘除法的关系

二、探究新知

1、教学例

1。教师:刚才我们从情景图中知道:每棵树上挂了4个灯笼。12棵树上挂了48个灯笼。通过这3个信息列出了3道算式,请同学们仔细观察这3道算式。12×4=48 48÷4=12 48÷12=4

(1)结合具体情景,让学生说说每个数所表示的意思和每个算式解决的问题。

(2)看一看除法和乘法之间有什么关系?学生分组讨论,全班交流。 说说每个算式各部分的名称,再比较上面3个算式,你有什么发现?(独立思考,小组讨论,做好记录)各小组汇报结果,教师板书。因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商除数=被除数÷商 被除数=商×除数已知两个因数的积与其中的一个因数,求另一个因数,用除法。除法是乘法的逆运算。教师:议一议,在有余数的除法里,被除数与商,除数,余数之间有什么关系?学生独立思考后,小组讨论,再汇报。

2、讨论。0不能做除数“0不能做除数”你知道这是为什么吗?先计算下列各题:(1)0÷4=0÷5=0÷134=(2)0÷0=6÷0=学生猜一猜这两组算式的商是几?说出理由。(引导学生根据乘、除法之间的关系来说明)

三、课堂活动

教科书第10页课堂活动。师生对口令,然后同桌互对口令。

四、巩固练习

1、练习三第1题,学生独立做在作业本上。

2、练习三第2题和3题,学生独立完成,全班反馈,说出依据。

五、课堂小结

今天这节课我们学习了什么知识,你都学到了什么?你还有什么问题?教学反思:第二课时乘除法的关系(二)

【教学内容】 课本第10页“议一议”,练习三第6~9题。

【教学目标】

1、初步知道整除,能判断简单的整除问题。

2、在区别“除尽”与“整除”的过程中,培养学生归纳、概括的能力。

【教学重难点】经历从除法中整理出“整除”的过程,能判断简单的整除问题。

【教学过程】

一、复习导入

(1)口算。(教师板书结果)6÷2=39÷2=15÷12=250÷50=26÷13=25÷7=160÷1=0÷9=76÷21=

(2)观察口算题及计算结果,你有什么发现?在小组里议一议。

二、教授新知教学“议一议”。

(1)全班按小组汇报交流发现的情况。(算式都是整数除以整数计算结果有“除尽”和“除不尽”两类,或有“有余数”和“没有余数”两类……教师将学生发现的情况一一板书出来让学生讨论,同时注意引导得出“整除”来)

(2)教师小结出整除的意义。像6÷2=3,0÷9=0……这些除法算式都没有余数。6÷2=3我们就说6能被2整除,或者说2能整除6。再让学生尝试说说:250÷50=,26÷13=,谁能被谁整除。

(3)再次引导学生讨论:在表示一个数能被另一个数整除的算式中,被除数、除数、商有什么特点?每个学生举出几个表示整除的除法算式。

(4)让学生思考“议一议”的题目。学生先独立思考,然后在小组中互相说一说,最后全班反馈。重点讨论25÷4=6......1。让学生写出对应的乘法算式。

(5)教师小结:被除数等于除数乘商再加上余数,除数=(被除数-余数)÷商。

三、课堂活动

1、同桌对口令,一人说一个除法算式,另一人说出对应的乘法和除法算式,完成后,角色互换。

2、练习三第7题:学生独立完成,点名回答,再集体订正理由。

3、练习三第8题:学生先独立试做,订正时抽学生说说依据。

4、练习三第6题。学生根据题目情境图中的信息,提出并解决问题。

四、拓展练习

练习三思考题:学生独立思考后试做,对有困难的同学可在小组中商量,全班汇报。

五、课堂小结

这节课你都学到了什么?还有什么问题吗?教学反思:第三课时乘法运算律及简便运算(一)

【教学内容】课本第12--13页例1~2,练习四第1题。

【教学目标】

1、经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。

2、理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

3、体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

【教学重点】在具体情景中探索发现乘法交换律、乘法结合律。

【教学过程】

一、创设情景,探索新知

1、教学例1。出示例1图,学生独立列式解答,然后在小组中互相交流。板书:9×4=36(个),4×9=36(个)。学生观察板书,思考:这两个算式有什么特点?板书:9×4=4×9。教师:你还能写出几个有这样规律的算式吗?板书学生举出的.算式。 如:15×2=2×158×5=5×8……教师:观察这些算式,你发现了什么?教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)2、教学例2。出示例2情景图,口述数学信息和解决的问题。学生独立思考,列式解答。然后在小组中交流解题思路和方法。全班汇报,教师板书。(6×24)×86×(24×8)=144×8=6×192=1152(户)=1152(户)学生对这两种算法进行观察、比较,有什么相同点和不同点?板书: (6×24)×8=6×(24×8)。出示下面的算式,算一算,比一比。16×5×2= 35×25×4=12×125×8= 16×(5×2)= 35×(25×4)= 12×(125×8)= 观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。板书:16×5×2=16×(5×2)35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?教师:谁知道这个规律叫什么?教师板书:乘法结合律。教师:如果用a、b、c表示3个数,可以怎样表示这个规律?教师板书:(a×b)×c=a×(b×c)。教师:这个规律就叫乘法结合律。小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

二、课堂活动

1、练习四第1题:学生独立完成,全班交流,说出依据。

2、同桌互动:一人写算式,一人说出对应的运算律。

三、课堂小结

今天这节课你都有哪些收获?还有什么问题? 教学反思:第四课时乘法运算律及简便运算(二)

【教学内容】课本第13页例3,课堂活动第2题和练习四第2~6题和思考题。

【教学目标】

1、进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。

2、培养学生灵活运用所学知识解决实际问题的能力。3、让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。

【教学重难点】灵活运用乘法交换律和乘法结合律进行简便计算。

【教学过程】

一、复习旧知,引入新课

1、回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。

2、填空。a×b=b×____(a×____)×c=a×(____×____)我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。二、探索新知1、学习例3。出示例3,算一算,议一议。61×25×48×9×125教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)全班汇报,教师板书:(1)①61×25×4=61×100=6100②61×25×4=1525×4=6100③……(2)①8×9×125=72×125=9000②8×9×125=9×1000=9000③…… 小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?全班交流汇报。教师小结:运用乘法运算律进行简便计算,它的核心就是“凑整”。往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。这里的设计是让学生讨论一题的多种计算方法,你认为哪种比较简便,为什么简便,来获得简便计算的感受,是可取的。]三、课堂活动1、课堂活动第2题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。2、练习四第3题:学生独立完成(连线)后反馈。

3、练习四第5题。怎样简便就怎样算,学生独立完成,老师指名板演。集体订正。4、练习四第11题。学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。其余学生判断。最后让学生独立解决在课堂作业本上,不得少于3个问题。注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。

四、拓展练习思考题:

引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。

五、课堂作业

练习四第6、7、8题。

六、课堂小结

这节课主要学习了什么知识?你还有什么问题吗?教学反思: 第五课时乘法运算律及简便运算(三)

【教学内容】课本第16页例4,课堂活动第1题和练习五第1、2题。

【教学目标】

1、经历在解决数学问题的情境中探索发现乘法分配律的过程。

2、理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。3、在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。【教学重、难点】探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。

【教学过程】

一、创设情景,探索新知出示例4。

(1)出示问题情景,解决问题。你从情景图中获取了哪些数学信息?要解决“一共需要多少元?”该怎样列式计算?(学生口答信息,然后独立列式计算)全班汇报解题思路和方法。教师板书:(40+20)×1440×14+20×14=60×14=560+280=840(元)=840(元)

(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。(小组讨论,全班交流)教师板书:(40+20)×14=40×14+20×14

(3)在计算中比较并发现乘法分配律。算一算,比一比。(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗? 学生独立计算验证自己的猜想。(小组讨论,全班交流)板书:(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4教师:谁还能举出符合这个规律的例子?(学生举例)教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。

(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?(学生独立写出,然后全班交流)教师整理并板书:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c

二、课堂活动

1、课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。最后让学生说一说自己是怎么算的?能说明乘法分配律吗?

2、练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?先做,再议一议,最后与全班同学交流。

三、课堂小结

这节课我们学习了什么?你都有些什么收获?你还有什么问题?教学反思:第六课时乘法运算律及简便运算(四)

《运算律》教案2

教材分析

这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。

学情分析

在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。

教学目标

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点和难点

1、引导学生概括乘法交换律、结合律。2、乘法交换律和结合律进行简便。

教学过程

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a.b指的是什么?

[设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。]

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的.准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成(5×3)×4 吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3) 可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3 3×(5×4)

[设计意图:通过对算式的变换,巩固乘法交换律]

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4 = 3×(5×4)吗?

生思考回答。

[设计意图:通过对算式异同的比较,让学生自己发现规律。]

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

四、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4 42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

[设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算.对所学的知识通过练习加以巩固运用。]

五、小结:

1、这节课你学到了什么?

2、我们是怎样认识这个好朋友的?

板书设计

运算律:乘法交换律、结合律

a×b﹦b×a (a×b)×c﹦a×(b×c)

《运算律》教案3

教学内容

课本56-57页上的内容及数学配套上的相关练习知识与能力

1、能进一步理解并掌握乘法分配律。

2、能应用乘法分配律使一些计算简便,发展应用意识。

过程与方法

经历乘法分配律的`探究过程,会用字母表示乘法分配律,进一步培养发现问题和提出问题的能力,积累合情推理的数学活动经验。

情感态度价值观

体会计算方法的多样性,发展学生的数感。

教学重难点

教学重点

能理解并掌握乘法分配律。

教学难点

培养发现问题的能力。

教学准备

课件、图片

教学媒体选择

PPT

教学活动

自主合作探究

教学过程

【探究学习 自主观察,发现问题。

1)、3×10+5×10=(3+5)×10=

2)、4×8+6×8=(4+6)×8=

我发现:

2、什么是乘法分配律?用字母如何表示?

3、用简便方法计算。

(60+25)×4 78×69+22×69 28×99+28 69×102 85×98

【导学解惑】:

1、请提出你的问题,大家一起来解答。

2、请记录下你认为特别有意义的题。

【当堂检测】:

下面的算式分别运用了什么运算定律

25×34 = 34×25 ( )

7×2×5 = 7×(2×5)( )

2×4+2×6=2×(4+6)()

用简便方法计算。

76×62+24×62 156×99+156 127×101

【课后反思】:

1.想一想,这节课有哪些收获?还存在哪些问题?

2.问一问自己:“今天,我主动学了吗?”

板书设计

根据老师讲课适当板书

作业设计

完成本节课题。第四单元运算律

课题

《运算律》教案4

教学目标:

1、知道整数加法的交换律,结合律对于小数加法同样适用的,能运用加法的交换律、结合律进行小数加减法的简算。

2、培养学生的计算能力,提高计算的技巧,发展学生的推理能力。

3、培养学生做事认真,讲求方法,注重实效。

教学重点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。

教学难点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。

教学过程:

一、引入

口算(小组竞赛)

前两组口算,体会凑整的好处;

后两组口算,体会加法运算律给计算带来的方便。

二、探究

1、出示例3

这四种文具,小华各买了一件,他一共用了多少元?

谈话:你会计算这道题吗?请你独立列式计算。

学生独立计算,注意选择学生采用的不同的方法,并展示。

比较:

1)观察这两种算法,你有什么发现?

2)你认为哪种算法简便?

提问用第二种方法的学生:你是怎么想到用这个方法的?

谈话:这种方法的使用,使你想到了整数加法的哪些运算律?

小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。

2、提问:我们以前学习过哪些加法的运算定律?这里的字母a、b、c可以表示怎样的数?

指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的.范围既包括整数,也包括小数。

三、练习

1、完成“练一练”的第1题。

集体交流,注意说一说使用的运算律。

补充一题,问,这题为什么不可以用简便方法?

提问:我们在使用运算律进行简便运算的时候,要注意些什么?

一审:审清题目(特别是运算符号)。

二看:观察数字特征,选择比较简便的算法。

三算:认真计算。

四查:查运算顺序;查数字;查每一步的计算。

2、完成第2题。

提问:求接力赛的总成绩,就是求什么?

学生独立解决。

小结:看来加法运算律用到小数加法里,果然很简便。

3、完成练习九的第2题

谈话:下面进行个比赛,请一二两组同学计算第一题,三四两组的同学计算第二题。

这两题做完,让你联想到了什么?

你知道整数减法的性质是什么吗?

你掌握了这个性质后,这一组题,你会选择做哪题?

小结:整数减法的运算性质,对小数减法也同样适用。

4、判断下列算式,能简便运算的,在()里打√,不能简便运算的打×。

2.7+6.6+3.4()

5.08-0.8-4.2()

7.5-3.87+2.13()

6.02+4.5+0.98()

6.17+28+3.2()

6.59+9.32-2.59()

小结:简便运算的时候,是不是光看数字就可以了?

5、填数,使计算简便:

32.54+2.75+()

四、课堂作业:

这节课你有哪些收获?

五、总结

完成练习九的3~5题

教学反思:

本节课是学生在已有的整数加法运算率的计算的基础上学习的。本节课的重点是顺利将加法(及减法的性质)的运算律迁移到小数加(减)法的运算中来,使得计算简便,难点是知识延伸中,学生的再建构。对于加法的结合律和加法交换律,学生已有基础,因此我本节课放手让学生自己去探索,从探索中寻求答案,让学生在探索的过程中既能学到知识,又能在探索中学会技能,避免了学习的单一性。

在教学本课时,我根据学生的年龄特点和迁移的认知规律,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:

1、竞赛。本课属于计算课,本身让人觉得枯燥无味、学生缺乏兴趣。因此在口算题目的处理中改为小组竞赛,希望以此为切入点,调动学生学习积极性,同时培养学生合作、竞争意识。

2、自主探究学习的方法。教学时,我创设了小华买文具的生活情景,让学生帮助他解决问题,使学生感受到被信任、能做事情的快乐,不仅实现了角色转换,唤起学生的主角意识,而且让学生享受到助人的乐趣。计算时让学生自行探究,从比较中得到简便算法,这样使学生体会到数学来源于生活,又应用于生活。

3、设计适合学生发展的题目,在本节课中,我另外编排了一些调动学生智力发展的问题,让学生有一个质的提升。

在教学中也出现了很多不足,比如,板书受学生影响,没有列出更合理的,导致板书不能对学生起到引导和潜移默化的作用。几处重要小结也没有做到水到渠成,显得不自然。

《运算律》教案5

设计理念:

根据高年级学生心理特点,我用学生熟悉的情景作为学习的素材,激发学生的学习兴趣。学时依据学生的思维特点,尊重学生的个性差异。探究新知过程充分发挥了学生的主体作用,让学生经历了一个完整的探究过程。在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识,逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

教学目标:

1、在解决实际问题的过程中,认识到整数加法的运算律对小数加法同样适用,能正确应用加法运算律进行一些小数加法的简便计算。

2、在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

教学重难点:

能正确应用加法运算律进行一些小数加法的简便计算。

教学准备:

多媒体课件。

教学过程:

一、 口算导入,复习铺垫。

1、口算练习九第1题,指名口答。

2、算一算,比一比。

(6.4+1.3)+8.7= (2.8+5.5)+4.5=

6.4+(1.3+8.7)= 2.8+(5.5+4.5)=

设计意图:通过口算小数加减法习题,复习巩固小数加减法的计算法则。通过“算一算,比一比”两组习题,让学生初步体验到应用加法的运算律进行小数加法的简便之外,从而为学习新知做铺垫孕伏。同时培养学生对数学的兴趣。调动学生学习数学的积极性、自觉性和主动性。

二、创设情境,探究新知。

1、同学们的表现真不错,回答的这么准确,看来个个都是计算小能手。那下面老师想拜托大家一件事情,你们愿意接受吗?

请大家看,小华在文具店买了一些文具,那他一共用了多少元钱呢?你能帮他算一算吗?

根据学生的回答,教师板书

8.9+3.6+6.4+1.1=

2、引导学生探索算法。

请同学先独立完成。(老师巡视,注意选择所采用不同方法的学生)谁愿意到黑板上来做。算完的同学可以和你的.同桌同学交流一下你的算法。

我们来看一下黑板上几位同学的板演。有两种不同的算法,结果都等于20元,计算的正确吗?看来两种方法都是可以的。

3、比较。

刚才同学们用不同的方法帮助小华算出了一共用的钱数,小华让我代他向大家表示感谢。看来咱们班的同学们个个都是好样的。那下面请大家仔细观察一下这两种算法,你有没有什么想法想要和大家分享的?

(其中一种方法更简便)

我们为什么可以这样算,这样算的依据到底是什么?说得再简单点就是你在计算的时候用的是什么运算律?(加法交换律和结合律)

你同意他的观点吗?

通过刚刚的例子我们可以发现,整数加法运算律,对小数加法也同样适用。这也就是我们今天要学习的加法运算律的推广。

我们以前学过哪些加法的运算律?你能字母将它们表示出来吗?

这里的字母a、b、c可以表示怎样的数?

指出整数加法的运算律对小数同样适用,所以这些字母所表示的数的范围既包括整数,也包括小数。

设计意图:本环节创设买文具的情境,把教学内容放到一个学生非常熟悉的情境中,学生通过尝试计算、知识迁移,自觉地将整数加法运算律迁移到小数加法运算当中,从比较中得出简便算法。这样既让学生题会到解决问题策略的多样性,增强了优化意识,体会到新旧知识之间的内在联系,培养了迁移能力,又让学生体会到数学来源于生活,有应用于生活。

三、巩固练习。

1、完成“练一练”第1、2题。

先让学生说说怎样算简便。

2、完成练习九第2题。

(1)学生独立完成。

(2)提问:比较每组算式的计算过程和结果,你有什么发现?

(3)谈话:整数减法的一些规律在小数减法里同样适用,运用这些规律也能使一些计算简便。

3、拓展练习。

(1)下面的算式中,哪些算式可以用简便方法计算的,请选出来。

2.7+6.6+3.4 7.5—3.87+2.13 6.17+28+3.2

5.08—0.8—4.2 6.02+4.5+0.98 6.59+9.32—2.59

(2)填上一个数,使计算简便。

32.54+2.75+( ) 7.58-2.66-( )

4、课堂作业。

完成练习九第3-5题。

《运算律》教案6

教学目标:

1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。

2、在学习的过程中,树立用规律简算,增强用规律验算得意识。

设计理念:

1、体现了“生活中处处有数学”。

2、课堂上灵活处理教材,选择适当的教法。

3、提高了小组的合作学习有效性。

4、促进了学生的主动性、个性化的学习。

课前准备:

教学挂图

教学过程:

一、创设情境,引出课题。

出示数学挂图:通过看图,把图意说一说。

二、提出问题,解答质疑。

弄清题以后,你能提出什么数学问题吗? (小组讨论)

生答师板书:济青高速公路全长约多少千米? 怎样解答呢?

(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。

110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。

(110+90)× 2 = 200 × 2 = 400(千米)

仔细观察,你能发现什么规律? (小组合作探讨)

生交流:发现两个算式的.结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。

(小组合作学习) 生自己举例来验证

生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?

生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的想法:

①可以进行验算。

②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)

三、巩固练习

自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。

第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。

第三题:先观察,再说出对错,然后把错的题重新做出来,集体订 正,并说出错题错在哪里。

板书设计: 乘法分配律

110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)

两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。

( a + b).c = a .c + b .c

《运算律》教案7

教学内容

义务教育课程标准实验教科书(西南师大版)四年级(下)第22~24页例4,课堂活动第1~2题和练习五第1题。

教学目标

1.历在解决数学问题的情境中探索发现乘法分配律的过程。

2.理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。

3.在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。

教学重、难点

探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。

教学过程

一、 创设情景,探索新知

出示例4。

(1)出示问题情景,解决问题。

你从情景图中获取了哪些数学信息?要解决"养鸡场共有多少只鸡?"该怎样列式计算?(学生口答信息,然后独立列式计算)

全班汇报解题思路和方法。

教师板书:

(50+30)×75 50×75+30×75

=80×75 =3750+2250

=6000(只) =6000(只)

(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。

(小组讨论,全班交流)

教师板书: (50+30)×75=50×75+30×75

(3)在计算中比较并发现乘法分配律。

算一算,比一比。

(3+2)×35=3×35+2×35= 3×(4+6)=3×4+3×6=

(13+12)×4=13×4+12×4=

比较每排的两个算式有什么关系?每排的两个算式的.计算结果相等吗?

学生独立计算验证自己的猜想。

(小组讨论,全班交流)

板书:

(3+2)×35=3×35+2×35 3×(4+6)=3×4+3×6

(13+12)×4=13×4+12×4

教师:谁还能举出符合这个规律的例子?(学生举例)

教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)

教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。

(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?

(学生独立写出,然后全班交流)

教师整理并板书:(a+b)×c=a×c+b×c 或a×c+b×c=(a+b)×c

二、课堂活动

1?课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。

最后让学生说一说自己是怎么算的?能说明乘法分配律吗?

2?课堂活动第2题:先让学生讨论,找出错误的原因,再汇报,最后让学生改正。

4?练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?

先做,再议一议,最后与全班同学交流。

三、课堂小结

这节课我们学习了什么?你都有些什么收获?你还有什么问题?

《运算律》教案8

教学目标

知识与技能:

掌握有理数加法法则,并能运用法则进行有理数加法的运算。

过程与方法:

1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

2.动手、发现、分类、比较等方法的学习,培养归纳能力。

情感态度与价值观:

1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

教学重点

有理数加法法则及运用

教学难点

异号两数相加法则

教具准备

powerpoint课件

课时安排

1课时

教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。

小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。

以B组为例,进入十六强的是阿根廷和韩国。

国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的`算式吗?

学生看图表,思考问题。

学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知

师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。

《运算律》教案9

教学内容

义务教育课程标准实验教科书(西南师大版)四年级(下)第23页例5,练习五第2~8题和思考题。

教学目标

1?进一步理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。

2?运用乘法运算律解决简单的实际问题。

3?培养学生灵活运用所学知识解决实际问题的能力。

教学重、难点

灵活运用乘法运算律进行简便计算。

教学过程

一、复习旧知,引入新课

1.上节课学习了乘法分配律,谁能分别用自己的话和字母表述乘法分配律?

2.填空。

25×6+75×6=

我们这节课一起来学习用乘法分配律进行简便计算。

二、学习新知

1.出示例5

用简便方法计算102×45,32×27+32×73。

教师:观察每个算式中的因数有什么特点?可以运用乘法运算律进行简便计算吗?(学生观察思考,独立尝试计算)

学生计算后汇报,教师板书如下:

(1)①102×4

②102×45

③……=(100+2)×45 =102×(40+5)

=100×45+2×45 =102×40+102×5

=4500+90 =4080+510

=4590 =4590

(2)①32×27+32×73

②32×27+32×73

③……=32×(27+73) =864+2336

=32×100=3200 =3200

小组讨论(小组讨论后,在全班交流)

(1)你认为每个题的哪种算法最简便?为什么?这种简便算法的依据是什么?

(2)运用乘法分配律进行简便计算时,要注意什么?

教师在学生讨论交流的基础上,小结运用乘法分配律进行简便计算的方法。

三、课堂练习

1.基本练习

(1)练习五第5题:学生独立完成口算题。

(2)填空。

巩固练习

(1)练习五第7题:学生独立完成,再集体订正。

(2)练习五第4题:学生根据题中所呈现的信息独立解决问题,然后思考还能提出哪些数学问题?

(3)练习五第8题:学生根据情景图中所呈现的信息先独立思考解决,对有困难的`可在小组中讨论解决。

全班交流,板演在黑板上,并说出自己解题的思路。

3.发展练习

练习五思考题,独立思考,有困难的先在小组中商量解决,最后全班反馈,要求说出思考过程。

4.课堂作业

练习五第2,3,6题。

四、课堂小结

今天的学习你都有些什么收获?你还有什么问题?

《运算律》教案10

教学目标:

1.结合具体事例,经历运用乘法运算定律计算并解答简单实际问题的过程。

2.能灵活运用乘法的运算定律进行简便计算,体验计算方法的多样化。

3.在选择合理的灵活的方法进行计算的过程中,体验乘法运算定律在解决实际问题中的价值,将数学与生活紧密联系起来。

教学重点:

1.体验算法的多样性,并能选择最简捷最适合的解题方法。

2.体验运用乘法运算定律解决实际问题的简便性。

教学难点:

运用乘法运算定律解决简单问题的过程。

教学过程:

一、情景导入

以一首诗开启今天的数学课堂,《钱塘湖春行》,教师配乐朗诵。

读完此诗,你有没有感受到春的气息,春天青山绿水、鸟语花香,到处一派生机勃勃的景象,春天也是郊游的季节。这个春天,我们去了科技馆与人民公园,我们马上还要去银川研学旅行了,在去之前我们先解决一些隐藏在这次旅行中的数学问题,你有信心来解决吗?

问题一:

1.出示例题:四年级有102名师生要去研学旅行,平均每人的费用25元,那么师生这次旅行共需要多少钱?

①指明学生读题,明确已知条件和所求问题,询问怎么列式?为什么用乘法?②要求:学生独立计算之后,再与四人小组交流算法。

③师巡视收集不同算法。(关注运用乘法运算定律进行计算的情况。)

2.展示交流算法。(算法预设如下)

A:笔算

1 0 2

× 2 5

5 1 0

2 0 4

2 5 5 0

B:口算

100×25=2500(元)

2×25=50(元)

2500+50=2550(元)

C:乘法结合律

25×102

=25×(2×51)

=25×2×51

=50×51

=2550(元)

D:乘法结合律

102×25

=102×(5×5)

=102×5×5

=510×5

=2550(元)

E:乘法分配律

102×25

=(100+2)×25

=100×25+2×25

=2500+50

=2550(元)

通过刚才咱们用多种方法求解102×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)

教师板书102×25

=(100+2)×25

=100×25+2×25

=2500+50

=2550(元)

答;师生这次旅行共需要2550元钱。

4.揭示课题,今天我们就来学习用乘法简便运算来解决生活中的数学问题。

5.如果我把题中条件稍加改动,你还会不会算?

师改题104人,,每人25元。学生口答,教师板书

6.总结:一个接近整百却大于整百的数乘另一个数,我们可以把它看成整百数加一个数的和乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。

问题二:

我们继续往下研究。

1.在102人中有4位是教师,学生自由98人,这些学生应交多少钱?指名读题列式。

要求:先独立完成,再同桌交流算法。

展示交流算法。(算法预设)

98×25

=(100-2)×25

=100×25-2×25

=2500-50

=2450(元)

答;这些学生应交2450元钱。

3.如果我把题中条件稍加改动,你还会不会算?

99人是学生,每人28元,一共多少钱?学生口答,教师板书。

4.总结:一个接近整百却小于整百的数乘另一个数,我们可以把它看成整百数减一个数的差乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。

问题三:

继续往下挑战

1.去春游的学生中有36人是四年级(2)班的学生,四年级(2)班的学生应交多少钱?

要求:学生自由读题,独立完成。

2.集体交流展示算法。(算法预设)

A:36×25

=(4×9)×25

=9×(4×25)

=9×100

=900(元)

B:36×25

=(40-4)×25

=40×25-4×25

=1000-100

=900(元)

3.通过刚才咱们用多种方法求解36×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)教师板书

36×25

=(4×9)×25

=9×(4×25)

=9×100

=900(元)

答:四(1)班学生应900元钱。

4.总结:如果是特殊数25乘另一个数,可以把另一个数拆分成4乘几的形式,再利用乘法结合律来计算,从而让计算变得更加简便。

二、巩固反思

通过刚才的学习,老师想知道大家为什么能算的又快又准确,有没有什么技巧与方法,能跟老师分享一下吗?

学生自由发言

总结:①两个数相乘,如果一个因数是接近整十、整百或整千的"数,可以将这个数写成整十、整百或整千的数加或减一个数的形式,再运用乘法分配律进行计算,会使计算简便。

②如果是特殊数25(或125等)乘另一个数,可以把另一个数拆分成4乘几(或8乘几)的形式,再运用乘法结合律进行计算,会使计算简便。

一次简单的出游,竟然隐含着这么多的数学问题,但都被我们的数学小能手们一一解决,大家说学好数学有没有必要?学好数学可以解决我们生活中的很多问题。

三、课堂小结

这节课你有什么收获?

四、板书设计

乘法简便运算

资源文件列表:

《运算律》教案11

教材分析

教材要求学生从生活中的例子来探索加法运算特点,通过观察和思考分析找出它的规律,要示学生初步了解这些规律,用字母表示这些规律,并能够理解及运用。教材在教学安排上由浅入深,加法运算律的学习是探讨乘法运算律的基础,因此这部分知识占据着重要的篇幅。在此基础上,教材引出了乘法运算律的知识,这两部分知识紧密联系在一起。教学中让学生通过循序渐进的学习,在培养分析归纳能力的同时,培养学生“由特殊到一般,再由一般到特殊”的认识事物的方法和独立自主、主动探索的学习意识。

学情分析

1、紧密联系学生的生活实际,引导学生在已有经验的基础上发现并归纳出运算律。

2、重视运算律的发现过程。引入实际事例,引导学生主动地探究规律、发现规律。在练习过程中提高合情推理和初步演绎推理的能力。

3、在具体的情况下逐步学会合理灵活地应用运算律,增强应用意识。

教学目标

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母表示加法交换律和结合律。2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的"实际问题的解决,进行比较和分析,发现并概括出运算律。3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点和难点

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

教学过程

一、创设情景,初步感知

1、课前谈话。

2、情景引入。(出示课件)

二、教学加法交换律

1、师:要求“跳绳的有多少人?”可以怎样列式呢?

生口答列式

师:你发现了什么?那可以用什么符号连接呢?(=)

(板书:28+17=17+28)

2、师:求“女生有多少人?”你会列式吗?

(生答,师板书:17+23=23+17)

3、师:你能照样子说出几个这们的等式吗?

4、师:(1)请你仔细观察上面的等式,你发现等号两边的算式什么变了?什么没变?

(2)像这样的等式写得完吗?那你能不能想办法用一个等式来表示所有的等式呢?

5、交流:我们以前用过这样的规律吗?想想在哪儿用过?(加法验算)

三、教学加法结合律

1、师:刚才同学们不仅解决了2个问题,而且还学会了加法交换律。那你会解决第三个问题吗?请你用一个综合算式来表示。

(1)学生尝试练习

(2)交流。师:你是怎样列式的?(28+17)+23

你先算的是什么?(跳绳的人)

追问:还有不同的方法吗?28+(17+23)

你先算的是什么?(女生人数)

师:(28+17)+23算出来的是什么?28+(17+23)呢?你发现了什么?可以用什么符号连接?(=)

板书:28+(17+23)=(28+17)+23

2、师:如果让你来算,你喜欢哪种方法?为什么?

3、师:请你算一算,下面的O里能填上等号吗?

4、师:请你仔细观察这两个等式,等号的左右两边有何共同点和不同点?

5、师:(1)三个数相加,是不是都存在这样的规律呢?

(2)你能照样子写出几个这样的等式吗?

(3)写得完吗?你会像加法交换律一样,用含有字母的式子来表示吗?

板书:(a+b)+c=a+(b+c)

6小结。(板书:加法结合律)

四、巩固练习

《运算律》教案12

教学内容:

复习、梳理第二单元内容。

教学目标:

1、知识与能力:进一步梳理单元知识,从而提高学生应用知识的能力。

2、过程与方法:通过学生回忆、梳理的方法,小组交流展示。

3、情感、态度与价值观:培养学生热爱数学的情感,感受数学的魅力。

重点难点:

乘法分配律的灵活应用。

教学准备:

练习题、教学课件。

教学过程:

一、谈话导入

师:同学们,我们前面复习了加法的运算律,本节课我们一起复习一下乘法的"运算律。

二、回顾乘法运算律

请同学们闭上眼睛想一想,乘法有哪些运算律?

小组交流,并写出乘法的运算律。(并说说其内涵)

小结(课件出示):乘法的结合律:(a×b)×c=a×(b×c)

乘法的交换律:a×b=b×a 乘法的分配律:(a+b)×c=a×c+b×c a÷b÷c=a÷(b×c)

三、知识的应用。

课件出示:

火眼金睛辨对错。并指出错误之处,再改正。

1、13×(4+8)=13×4+13×8 ()

2、(a+b)·c=a+(b·c)()

3、12×4×4×13=4×(12+13)()

4、78×101=78×100+78 ()

5、120÷5÷4=120÷(5×4)()

6、59×80=59×8×10 ()

四、学生做强化练习。练习纸,实物投影展示。

125×7×823×25×432×25380÷5÷2 420÷(5×7)270÷45 12×105135×6+65×685×199+8599×15164×9-64×980-8×25 125×48+125×53-125201×46-46

五、课堂总结。

《运算律》教案13

一、素材的选取。

本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:

(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。 据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。1999年被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。

(2)山东的高速公路全国闻名。 说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。

(3)以比较真实的数据为素材,体现了数学的价值。 本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。

二、本单元的情景串。

本单元有2个信息窗。

依次是: 单元知识分析 单元教材解读 信息窗1的解读 已学的知识 乘法的认识 整数的四则混合运算 (三下52×47-50×47 用字母表示数(四上1) 加法运算律 (四上1) 一般行程问题 (二下p105,三上p76,p78,三下5)路程、时间、速度三者 数量关系。 本单元新学知识 乘法结合律 乘法交换律(乘除法各部分之间的关系) 乘法分配律(相遇问题) 运用乘法运算律进行简便运算。 后续学习的知识 乘法运算律在小数和分数计算中的推广 用方程解行程问题 (山东版有关行程问题的学习都安排在简易方程单元。) 高速运转的长途汽车站 高速运转的.济青高速

1、情景图的解读。

此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。

2、情景图中的信息。

是2组数据:

(1)平均每天发车的数量

(2)平均每车次的乘客人数。

3、例题的设置与功能。

本信息窗一共有3个例题,包含的知识点分别是:

(1)乘法结合律。

(2)乘法交换律。

(3)运用乘法交换律和结合律进行简便运算。 乘除法各部分的关系。(第六题)

《运算律》教案14

教学目标

1. 在对已学知识的整理和复习中,进一步理解加法、乘法的交换律和结合律,能合理、灵活、正确地应用运算律进行简便计算。

2. 能联系生活实际运用加法、乘法的交换律和结合律,解决简单的实际问题。

3. 在自主探究、合作交流中获得成功的体验,激发学习数学的积极性。

教学过程

一、 创设情境,激趣引入

1. 引导观察。

谈话:下面是某新华书店销售的三种图书的价格。

出示:

书 名

每本书的价钱(元)

《数学故事》

12

《成语故事》

15

《科幻故事》

18

提问:观察表格,你能从中获得哪些信息?能提出哪些数学问题?(如:买一本《数学故事》和一本《成语故事》要用多少元?买三本书一共要用多少元?三年级有5个班,每个班买3本《数学故事》,一共要用多少元?等等)

随着学生的回答,投影出示学生所提出的问题,并对提出的问题进行整理。

2. 解决问题。

提问:同学们很会动脑筋,提出了这么多数学问题,你想解答哪些问题?选择一些自己感兴趣的问题进行解答,并想一想才能怎样比较快地算出结果。

学生独立解决自己所选择的问题,教师巡视。

反馈:你解决了哪些问题?是怎样计算的?(着重交流是怎样运用加法或乘法的运算律使计算简便的)

板书:12 + 15 + 18 12 3 5

12 + 18 + 15 12 5 3

比较:观察上面的两组算式,你想到了什么?

3. 揭示课题。

谈话:看来,我们在解决问题时,经常要运用加法、乘法的运算律,使计算简便。今天这节课我们就一起来复习加法和乘法的运算律。(板书课题:运算律复习)

提问:我们已经学过哪些加法和乘法的运算律?你想怎样复习?通过复习达到什么要求?

[说明:从现实情境引入,可以激发学生的学习热情,激活学生学习的兴奋点。注意对复习方法进行指导,把学生放在学习的主体地位,增强了学生的主人翁意识。]

二、 合作交流,知识梳理

谈话:下面就请同学们回忆一下本学期学过的运算律,用自己喜欢的方法整理出来,并在小组内交流你整理的结果。

学生独立完成整理,教师巡视。

学生中可能出现的整理方法有:举例,文字描述,字母表示等。

小组活动:同学们都用自己的方法整理了已经学过的运算律,请把你整理的结果和小组里的同学一起分享,并讨论一下,能把你们小组同学的各种方法整理在一张表格里吗?试一试。

组织交流,由小组选派代表,交流整理的方法和完成的表格。

根据学生的整理结果,完成下面的表格:

举 例

文字描 述

字母表示

交换律

结合律

交换律

结合律

[说明:让学生自己整理已经学过的运算律,便于学生加深对加法和乘法运算律的理解,同时,形成合理的认知结构。学生在这一过程中,也能体会到合作学习的作用,进一步增强与同伴合作学习的意识。]

三、 巩固练习,加深理解

1. 填一填。

出示题目:

下面的计算分别应用了什么运算律?在括号里填一填。

86 + 35 = 35 + 86( )

72 + 57 + 43 = 72 + (57 + 43)( )

76 40 25 = 76 (40 25)( )

125 67 8 = 125 8 67( )

学生独立完成,全班交流。

2. 辨一辨。

出示题目:

先在括号填上适当的数,再连一连。

81 + ( ) = 0 + 81 乘法交换律

16 4 25 = 16 ( )加法交换律

184 + 168 + 32 = 184 + ( )乘法结合律

a 56 b = ( ) 56 加法结合律

学生独立完成后,组织交流。

3. 比一比。

下面每组题的计算结果相同吗?为什么?

(1) 88 + (24 + 12) (2) 28 15

(88 + 12) + 24 7 (4 15)

(3) 856 - (656 + 120) (4) 540 45

856 - 656 - 120 540 9 5

要求:比较每组的两道题,它们的计算结果相同吗?各是应用了什么运算律或运算性质?

4. 算一算。

出示题目:

你能分别算出三角形、正方形中几个数的和,圆中几个数的积吗?

学生独立完成后,全班交流算法,并说一说怎样算比较快。

[说明:通过一组有层次的练习,引导学生在填一填、辨一辨、比一比、算一算等数学活动中,由具体到抽象地加深对运算律的`理解,为灵活应用运算律解决实际问题打下基础。]

四、 灵活应用,解决问题

1. 下面是某校学生生活区今年上半年用电情况,根据相关信息,解决下列问题。

以小组为单位进行比赛,求出一共用电多少千瓦时,看哪一组算得又对又快。

分组汇报怎样算比较快。

提问:解决了上面的问题,你有什么想对大家说的吗?

2. 下面是四(2)班马小平同学阅读三本课外书的情况统计。

提问:根据表中数据,你能提出数学问题吗?

提问:怎样分别求出每本课外书一共有多少页呢?怎样算比较快?自己先想一想,再独立解决。

学生独立列式计算后,指名介绍自己的算法。

师生共同评价各种算法,并总结应用运算律使计算简便的方法。

[说明:本环节为学生提供了两个具有现实意义的数学问题,问题中没有要求学生应用运算律进行简便计算,但学生通过分析题中的数据,会发现这些题具备应用运算律进行简便计算的特征,通过计算、交流、反思等学习活动,进一步感受运算律在解决实际问题过程中的价值。]

五、 全课总结,质疑问难

提问:今天的这节课,我们复习了哪些内容?你有哪些收获?还有哪些不理解的问题吗?

学生交流,并评价自己与同伴的表现。

[说明:让学生适时反思自己在本课学习中的所得,及时评价自己与同伴的学习行为、态度,大胆地说出遇到的困惑或困难,提出自己的观点,有利于学生形成积极的学习态度,提高学习效率。]

六、 课后延伸,挑战自我

用简便方法计算下面各题。

995 + 996 + 997 + 998 + 999 125 (17 8) 4

1 + 2 + 3 + 4 + 5 + 95 + 96 + 97 + 98 + 99

25 32 125

[说明:课后安排富有挑战性的练习,不仅可以进一步深化本课学习内容,更为那些学有余力的学生提供挑战自我、超越自我的机会。]

《运算律》教案15

六年级下册《运算律》教案

教学内容

教材79页运算律

教学目标

知识技能

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

数学思考与问题解决

能根据具体情况,选择算法,发展思维的灵活性。

情感态度

在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。

教学重点

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

教学难点

能根据具体情况,选择合适的算法。

教法学法

自学与合作相结合、讲解与互帮相结合。

教学准备

收集一些学生平时做错的例子,多媒体

教学过程

(一)复习导入

1.我们学过了哪些有关整数的运算律?(用提问的方式复习)

2.它们有什么作用?

(二)系统复习

1.回顾和总结学过的整数运算律。(显示,分别复习运算律的文字叙述,和字母公式)

(1)加法交换律 a+b=b+a

(2) 加法结合律 (a+b)+c=a+(b+c)

(3) 乘法交换律 ab=ba

(4) 乘法结合律 (ab)c=a(bc)

(5)乘法对加法的分配律 (a+b)c=ac+bc

2.用多种方式验证这些运算律。(完成79页第1题的第2小题,由学生自告奋勇回答书上的题目,由其他全体学生判断正确与否),

3.认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)

4.感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。

(1)出示79页巩固应用的第1题

(2)引导学生观察、思考。(自己通过观察、分析找出结果)

(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)

(4)数学万花筒。(自主阅读)

三、习题设计(贯穿于教学过程)

1.选用合适的方法计算下面各题:

46+32+54 0.7+3.9+4.3+6.3 25╳49╳4

8╳(36╳125) 8╳4╳12.5╳0.25 546+785-146

【设计意图】这是六道运用运算律解决计算题的基本题目,主要考察学生掌握运算律的情况。让学生自己在下面做,然后选六个学生上台演板,请学生自己上台讲评。

2.用乘法对加法的分配律计算下面各题

2.7╳4.8+2.7╳5.2 905╳99+905 13╳10.2

【设计意图】在下面就有学生反映乘法对加法的分配律掌握的`不好,因此增加了乘法对加法的分配律的练习。在学生练习完以后,仍然发现个别学生掌握的不好。我增加讲述一个小故事帮助学生记忆。故事是:说一个父亲有一大一小两个儿子,过节了父亲去大儿子家走亲戚,当然不能偏向也要去小儿子家走亲戚呀。其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

板书设计

运算律

(1)加法交换律 a+b=b+a

(2) 加法结合律 (a+b)+c=a+(b+c)

(3) 乘法交换律 ab=ba

(4) 乘法结合律 (ab)c=a(bc)

(5)乘法对加法的分配律 (a+b)c=ac+bc

教学反思:

在学生练习完以后,仍然发现个别学生对乘法分配律掌握得不好,我们还可以增加一个故事,来加深学生对乘法对加法的分配律的理解。有父子三人分别代表三个数,其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:《运算律》教案  运算  运算词条  教案  教案词条  《运算律》教案词条  
教案教案

 手指教案

手指教案推荐度:手指教案推荐度:手指教案推荐度:相关推荐手指教案锦集七篇作为一位无私奉献的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与...(展开)

教案教案

 幼儿园中班数学教案

实用的幼儿园中班数学教案推荐度:幼儿园中班数学教案推荐度:幼儿园中班数学教案推荐度:相关推荐精选幼儿园中班数学教案4篇在教学工作者开展教学活动前,编写教案是必不...(展开)

教案教案

 中班语言教案落叶

中班语言教案落叶作为一名无私奉献的老师,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写...(展开)