快好知 kuaihz

平行四边形教案

平行四边形教案

推荐度:

平行四边形教案

推荐度:

平行四边形教案

推荐度:

相关推荐

平行四边形教案范文集合7篇

在教学工作者开展教学活动前,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?下面是小编为大家整理的平行四边形教案7篇,欢迎大家分享。

平行四边形教案 篇1

一教学目标:

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题.

3.培养用类比、逆向联想及运动的思维方法来研究问题.

二重点、难点

1.重点:平行四边形的判定方法及应用.

2.难点:平行四边形的判定定理与性质定理的灵活应用.

3.难点的突破方法:

平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.

(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

②本节课只介绍前两个判定方法.

(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的`能力.

(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

三例题的意图分析

本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

四课堂引入

1.欣赏图片、提出问题.

展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形

平行四边形判定方法2 对角线互相平分的四边形是平行四边形

五例习题分析

例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.

求证:四边形BFDE是平行四边形

分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.

(证明过程参看教材)

问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.

例2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.

求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

(2) △ABC的顶点分别是△B′C′A′各边的中点.

证明:(1)∵A′B′∥BA,C′B′∥BC,

∴四边形ABCB′是平行四边形

∴ ∠ABC=∠B′(平行四边形的对角相等).

同理∠CAB=∠A′,∠BCA=∠C′.

(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形

∴ AB=B′C, AB=A′C(平行四边形的对边相等).

∴ B′C=A′C.

同理 B′A=C′A, A′B=C′B.

∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.

例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.

解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.

六随堂练习

1.如图,在四边形ABCD中,AC、BD相交于点O,

(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形

(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形

2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.

3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:

①第4个图形中平行四边形的个数为_____.

(6个)

②第8个图形中平行四边形的个数为_____.

(20个)

七课后练习

1.(选择)下列条件中能判断四边形是平行四边形的是( ).

(A)对角线互相垂直 (B)对角线相等

(C)对角线互相垂直且相等 (D)对角线互相平分

2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

求证:BE=CF

平行四边形教案 篇2

教学要求:

1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2.养成良好的审题习惯。

3.培养同学们分析问题、解决问题的能力。

教学重点:

运用所学知识解答有关平行四边形面积的`应用题。

教具准备:

卡片

教学过程:

一、基本练习

1.口算。

2.平行四边形的面积是什么?它是怎样推导出来的?

3.口算下面各平行四边形的面积。

(1)底12米,高7米;

(2)高13分米,底6分米;

(3)底2.5厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

(1)生独立列式解答,集体订正。

(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:

先求这块地的面积:25078010000=1.95公顷,

再求共收小麦多少千克:70001.95=13650千克

(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

与(2)比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500(250781000)

(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

(1)你能找出图中的两个平行四边形吗?

(2)他们的面积相等吗?为什么?

(3)生计算每个平行四边形的面积。

(4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

3.练习第10题:已知一个平行四边形的面积和底,求高。

分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

三、课堂练习

第7题。

四、小结

本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

平行四边形教案 篇3

教学内容:课本第73-74页练习十七第4-9题

教学要求:

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:口算卡片。

教学过程:

一、复习

1、平行四边形的面积计算公式是什么?

2、口算:

4.9÷0.75.4+2.64×0.250.87-0.49

530+2703.5×0.2542-986÷12

3、求平行四边形的面积。

(1)底12米,高是7米;(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米

4、出示课题。

二、新授

1、补充例题

一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

与上题比较,从数量关系上看,什么是相同的?什么是不同的`?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

A900×(125×24÷10000)

B900÷(125×24)

C900÷(125×24÷10000)

2、小结(略)

三、巩固练习

练习十七第6、7题

四、课堂作业

练习十七第8、9题

⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

板书设计:

平行四边形面积的计算

教后感:

平行四边形教案 篇4

教学内容:

人教版五年级上册第六单元86页---88页,

教学目标:

1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。

2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。

3、培养学生,观察分析,概括推导,和解决实际问题的能力。

4、使学生感受数学与生活的联系,培养学生的.数学应用意识,体验数学的实用价值。

教学重点:

理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,

教学难点:

通过转化的方法理解平行四边形的面积计算公式、

教学过程:

一、回忆旧知,谈话导入

1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?

2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?

平行四边形教案 篇5

一、内容和内容解析

1.内容

平行四边形对角线的性质.

2.内容解析

这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

二、目标和目标解析

1.目标

(1)探究并掌握平行四边形对角线互相平分的性质.

(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

2.目标解析

达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的"关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

三、教学问题诊断分析

本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

四、教学过程设计

引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

1. 引入要素 探究性质

问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

你能证明上述猜想吗?

教师操作投影仪,提出下面问题:

图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

学生合作学习,交流自己的思路,并讨论不同的验证思路.

教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

师生归纳整理:

定理:平行四边形的对角线互相平分.

我们证明了平行四边形具有以下性质:

(1)平行四边形的对边相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分.

设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

2.例题解析 应用所学

问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

3.课堂练习,巩固深化

(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

4.反思与小结

(1)我们学习了平行四边形的哪些性质?

(2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

5.布置作业

教科书P49页习题18.1 第3题;

教科书第51页第14题.

平行四边形教案 篇6

教学目标:

1、通过拉一拉长方形,初步认识并了解平行四边形的特点。

2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形

教学准备:两个长方形相框(相同大小,可活动)

教学过程:

一、动手探索,多角度认识:

1、我们学了四边形,怎么判断一个图形是不是四边形呢?

(板书:四边形四条直边四个角)

2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相 等,有4个直角)

3、拉动长方形框架,发生了什么变化?(角、边、形)

4、揭题:这就是我们今天要学的——平行四边形。(完善板书)

5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)

是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手 量一量。

6、生活中有这样的图形吗?

1)出示主题图:为什么移动门要设计成这样的形状呢?

2)展示三角形的稳定性和平行四边形的不稳定性。通过拉一拉的活动。

7、围一个平行四边形

闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一 围。

8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)

鼓励优生多画几个不同的四边形。

9.“猜猜它是谁”:

1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?

2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形? 四、创设情境,欣赏平行四边形

在哪些地方可以见到平行四边形呢?

成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的。接着让量一量书上的平行四边形的边和角,概括出平行四边形的特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。

不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的"画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。

重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。

平行四边形教案 篇7

教学过程

一、课堂引入

1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?

2.你能说说平行四边形性质与判定的用途吗?

(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)

3.创设情境

实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)

图中有几个平行四边形?你是如何判断的?

二、例习题分析

例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.

分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形

方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)

方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

定义:连接三角形两边中点的线段叫做三角形的中位线.

【思考】:

(1)想一想:①一个三角形的.中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系?

(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:平行四边形教案  平行四边形  平行四边形词条  教案  教案词条  平行四边形教案词条  
教案教案

 大班教案

大班教案推荐度:《动物》大班教案推荐度:最新大班教案推荐度:《拜年》大班教案推荐度:《螃蟹运球》大班教案推荐度:相关推荐【必备】大班教案集锦6篇作为一位不辞辛劳...(展开)

教案教案

 汉语拼音教案

汉语拼音教案推荐度:汉语拼音教案推荐度:一年级上册汉语拼音ai ei ui教案推荐度:相关推荐精选汉语拼音教案范文集锦8篇作为一名人民教师,很有必要精心设计一份...(展开)

教案教案

 小班教案

《秋天》小班教案推荐度:小班游戏教案推荐度:小班安全教案推荐度:小班健康教案推荐度:小班垃圾分类的教案推荐度:相关推荐有关小班教案锦集10篇作为一名教职工,时常...(展开)