推荐度:
推荐度:
推荐度:
相关推荐
作为一名教学工作者,就难以避免地要准备教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的平行四边形教案9篇,欢迎阅读与收藏。
教学内容:
义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。
教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。
3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。
教具准备:多媒体课件、剪刀、平行四边形
教学过程:
一、情景引入,激趣导课
建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?
导入新课,揭示图形板书课题。
二、动手操作,探究新知
1、复习:复习平行四边形的底和高。
2、归纳意见,提出验证
学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。
3、学生汇报结果,展示操作过程
小组的代表来展示各组的操作方法。
4、演示过程,强化结果
多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?
5、填空、归纳公式
根据刚才的操作过程,完成填空题,并归纳板书公式。
把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的.面积(),因为长方形的面积=(),所以平行四边形的面积=()。
6、提问质疑
学生阅读课本81页的内容,质疑。
三、分层练习,内化新知
1、用公式分别算一算两个停车位的面积。
2、计算相对应的底和高的平行四边形花圃面积。
3、计算平行四边形牌两面涂漆的面积。
4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。
四:课堂。
今天我们学习了什么?通过学习,你有那些新的收获呢?
板书设计:
平行四边形的面积
长方形的面积=长×宽
(转化)
平行四边形的面积=底×高
S=a×h
【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)
【回顾与思考】:
活动一:
准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.
(1)你得到了怎样的四边形?与同伴交流一下
(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?
平行四边形 连成的线段叫做对角线
如图,四边形ABCD是平行四边形,
记作” ”
活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?
平行四边形的对角
几何语言:
∵四边形ABCD是平行四边形(已知)
∴AB= ,BC= ( )
∠A = ,∠B = ( )
【知识应用】:
1. □ABCD中,AB=3,BC=5,则AD= CD= 。
2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。
3. 如图:四边形ABCD是平行四边形。
(1)边AB、BC的长度
(2)求∠D、∠C度数。
【当堂反馈(小测)】:
1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.
2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;
3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.
4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.
5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。
6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数
【巩固提升】:
1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。
2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。
3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。
4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )
A. 105° B. 115° C. 125° D. 65°
5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )
A. 80° B. 90° C. 100° D. 110°
6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )
A、88°,108°,88°B、88°,104°,108°
C、88°,92°,88° D、88°,92°,92°
7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1
8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。
9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数
10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?
导学目标:
1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用
导学准备:多媒体课件
导学过程:
一、快速反应
1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________
2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________
3.小明拼成的`四边形如图所示,图中的四边形ABCD是平行四边形吗?
结论:______________________________________
符号表示:
4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?
在图中,AC=BD=16, AB=CD=EF=15,
CE=DF=9。
图中有哪些互相平行的线段?
二、议一议
1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?
三、平行四边形的判别方法:
(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)两条对角线互相平分的四边形是平行四边形。
四、练一练:
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?
3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。
五、师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用
六、课后巩固:课本P107习题4.4第1题和第2题
七、课后反思:
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的.长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
教学
目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题
重点
难点平行四边形的有关性质和四边形是平行四边形的条件的"灵活的运用。
导学过程教师复备
(学生笔记)
复习回顾
1.平行四边形有哪些性质?
2.判别四边形是平行四边形的条件有哪些?
3.平行四边形的性质与条件的区别?
例题精讲
例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?
例2、如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?
反馈练习
1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)
2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?
3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由.
教学目的
1.引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点.
2.会在方格纸上画长方形、正方形.
3.初步认识平行四边形.
教学重点
掌握长方形、正方形的特征
教学难点
长方形、正方形的区别和联系
教具、学具准备
多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板.
教学过程
一、创设情境,提出问题.
出示8根小棒(6长、2短)
1.小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多.
2.交流:请各小组到投影上边摆边说有几种.
3.设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容.(出示课题)
二、主动探索,研究问题.
1.认识长方形.
(1)独立探索,小组交流.从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流.)
(2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的.找几个组说一说.(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)
(3)辩论:长方形有什么特征呢?(小组讨论)
(4)教师总结:刚才有的同学利用身边的学具量一量,有的同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角.【演示动画长方形、正方形】
(5)学生之间交流长方形的特点.每个人都用纸折折看,再验证一下.
2.认识正方形.
(1)独立探索,小组交流.
同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行.
(2)汇报交流:正方形有什么特征呢?(小组互相说)
(3)教师总结.我们用了同样的方法,验证了正方形的边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角.(继续演示动画长方形、正方形)
3.小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】.
(1)师问:长方形与正方形有什么相同点和不同点吗?
(2)教师总结:刚才我们研究了长方形和正方形的边角特点.发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等.
(3)引导学生揭示四边形的概念.
由四边形围成的图形就是四边形,长方形和正方形都是四边形.
(4)初步练习:在钉子板上围一个正方形和一个长方形.
4.平行四边形的初步认识.
(1)出示:
让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?
(2)投影出示画在方格纸上的平行四边形.
引导学生知道:它们有4个角,4条边.
教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形.
教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形.
引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点.)
(3)小组研讨,汇报总结.
平行四边形 角:4个
边:四条 相对的边相等
(4)利用学具摆2个不同的平行四边形.
(5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角.如图:
讨论:平行四边形与长方形有哪些相同,有哪些不同?
引导学生:平行四边形和长方形都有四条边,都是相对的边相等.长方形的四个角都是直角,而捏住长方形相对的两个角的顶点一拉,它就不是长方形了,是一个平行四边形.当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了.【演示动画变化的图形】
三、运用知识,解决问题.
1.要求:利用手中的小三角形摆长方形、正方形、平行四边形.(4个小三角形)
2.利用手中的七巧板摆一些漂亮的"图形,再给它起个名字.
四、看书质疑,全课总结.
板书设计
探究活动
七巧板
游戏目的
帮助学生认识几何图形,培养空间关系的认识能力和想象能力.
游戏准备
学生每人准备各种各样的图形,如:三角形、长方形、正方形等.
游戏过程
1.学生按下面三个要求拼图:
①用任意两块图形拼成一个正方形;
②用任意三块图形拼成一个长方形;
2.学生自由拼图,可以拼几何图形、建筑物或其他图案,在规定的时间里谁拼得的图形多,谁就是优胜者.
注意事项
等分长方形的奥秘
活动内容
让学生用折纸的办法把长方形平均分成两份.
活动目标
1.通过折、画、讨论、猜测、验证等形式的活动,使学生掌握用一条直线等分长方形的方法.培养学生创造性思维的能力和探索未知的方法.
2.运用分组的活动形式,培养学生的合作精神和竞争意识.
重点和难点
通过教学,让学生感受并初步掌握实例分析综合思考提出猜测推理验证这种探索问题的方法.是本课教学的重点.如何探索出能等分长方形的直线的规律是本课教学的难点.
活动准备
1.教具:长方形纸若干张、教学课件.
2.学具:直尺、小刀、水笔、大小相等的长方形纸片约10张.
活动过程
1.折一折,把长方形平均分成大小相等的两份.然后用直尺沿着折痕画出直线.试一试,你们能折几种?
(1)请小组成员共同讨论,注意互相分工合作.
(2)长方形纸片在信封里.
(3)动手折纸时间为3分钟,比比看,哪组同学画得又快又对又多?
2.反馈交流:指名上台汇报小组讨论探究的结果.分了几种?是哪几种?然后老师把把相应的折法张贴在黑板上.
3.探索规律.
师:这样的直线还有吗?还有几条呢?我们先不忙下结论,还是先来研究这些已经知道的直线有什么共同特点.
(1)将你们小组等分的长方形纸片2张重叠,并把重叠的长方形纸片拿起来,对准强光处照一照,然后3张、4张逐渐重叠,你发现了什么?
(2)课件显示各种等分长方形的直线相交于同一点的动态过程.
(3)引导学生小结:等分长方形的直线都相交于长方形内的一点.
游戏前,教师可借助磁性黑板等教具作些示范演拼.在学生自由拼图时,教师可在黑板上勾画一些图案,以启发学生思维.
教学目标:
过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。
情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。
教学过程:
一、 创设情境
1、认识平行四边形
(1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的要求。
(2)在交流的基础上,让学生了解什么样的`图形叫做平行四边形。
(3)引导学生从自动拉门、篱笆中找出平行四边形。
2、感悟平行四边形的特征
⑴学会画平行四边形。
教师掩饰在方格纸上画一个平行四边形。
⑵引导学生找到平行四边形的不稳定性。
二、实践与应用
1.下面哪些图形是平行四边形?把它涂上色。
2.在方格纸上画一个大一点的平行四边形。
三、全课小结
学生汇报本节课的收获。
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。
教具准备:投影
教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。
长方形长×宽ab
正方形边长×边长a2
平行四边形底×高ah
三角形底×高÷2ah÷2
梯形(上底+下底)×高÷2(a+b)h÷2
2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
1.练习十八第12题:计算下面每个图形的面积。
3米8米12米
5.6米9.5米12米
5厘米
5.4
分5.8厘米5.2厘米
米
3分米5厘米7厘米
⑴省独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2”
⑶指6名学生板演,集体订正。
2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
练习十八第14题
四、攻破难题
1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?
分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2
⑵上底+下底=21+45=66米
⑶高=759÷66×2=23米20厘米
2.17题:已知右面梯形的上底
是20厘米,下底是34厘米,其中涂色
部分的面积是340平方厘米。这个梯形
的面积是多少?34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的.面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。
高:340×2÷34=20厘米,
面积:(34+20)×20÷2=540平方厘米
3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米
25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考题4厘米
右图中,梯形的面积是7212
平方厘米。请你算出阴影厘
部分的面积。米
解法一:先算出没有阴影部分
的面积:4×12÷2=24平方厘米,
再用梯形的面积减去这个三角形
的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:
72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
练习十八11、13题
(一)教学目标
1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
2.使学生掌握平行四边形和梯形的特征。
3.通过多种活动,使学生逐步形成空间观念。
(二)教材说明和教学建议 教材说明
本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。
例题
具体内容及要求
垂直与平行
例1
认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2
学习画垂线,认识“点到直线的距离”。
例3
学习画平行线,理解“平行线之间的距离处处相等”。
平行四边形和梯形
例1
把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
例2
认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。
学习画高。
教学建议
1.关注学生已有的生活经验和知识基础,把握教学的`起点和难点。
教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。
2.理清知识之间的内在联系,突出教学的重点。
由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。
3.注重学用结合,就地取材,充实教材内容。
尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。
4.加强作图的训练和指导,重视作图能力的培养。
这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。
5.本单元可用6课时完成。