推荐度:
推荐度:
推荐度:
相关推荐
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?下面是小编整理的平行四边形教案3篇,仅供参考,希望能够帮助到大家。
教学目标:
1、通过拉一拉长方形,初步认识并了解平行四边形的特点。
2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形。
教学准备:两个长方形相框(相同大小,可活动)
教学过程:
一、动手探索,多角度认识:
1、我们学了四边形,怎么判断一个图形是不是四边形呢?
(板书:四边形四条直边四个角)
2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相 等,有4个直角)
3、拉动长方形框架,发生了什么变化?(角、边、形)
4、揭题:这就是我们今天要学的——平行四边形。(完善板书)
5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)
是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手 量一量。
6、生活中有这样的图形吗?
1)出示主题图:为什么移动门要设计成这样的形状呢?
2)展示三角形的稳定性和平行四边形的不稳定性。通过拉一拉的活动。
7、围一个平行四边形。
闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一 围。
8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)
鼓励优生多画几个不同的四边形。
9.“猜猜它是谁”:
1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?
2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形? 四、创设情境,欣赏平行四边形 。
在哪些地方可以见到平行四边形呢?
成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的。接着让量一量书上的平行四边形的边和角,概括出平行四边形的.特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。
不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。
重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
一、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的"右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
三、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
四、作业
练习十五第1题。
五、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
教材简析:
1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。
2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的数学思维。
3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。
教学目标:
1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。
2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。
3.使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。
教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。
教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的.图片。
学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。
教学过程:
一、游戏激趣,创设情境
小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?
二、动手操作,探索新知
1.折一折,认识三角形
(1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)
(2)展示成果。
哪位小朋友愿意上来说一说你是怎样折的?
①对折成两个完全一样的长方形。(这是我们已经认识的)
②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)