快好知 kuaihz

平行四边形教案

平行四边形教案

推荐度:

平行四边形教案

推荐度:

实用的平行四边形教案

推荐度:

相关推荐

有关平行四边形教案范文集锦9篇

作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编帮大家整理的平行四边形教案9篇,希望能够帮助到大家。

平行四边形教案 篇1

学习目标

1、 理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等。

2、认识平行四边形的底和高,会画出平行四边形的高;

3、培养学生的实践能力,观察能力和分析能力。

学习重点:

掌握平行四边形的特征。

学习难点:

会画平行四边形的高。

学习准备:

课件、长方形框架、平行四边形纸、钉板

导学过程:

一、魔术表演:

教师拿出一个用四根木条钉成的长方形,两手捏住长方形的.两个对角,向相反方向拉,观察两组对边有什么变化?拉成了什么图形?为什么会发生这样的变化?

二、揭示课题和目标。

三、体验平行四边形的特性

1、揭示平行四边形的不稳定性;

2、你能举出日常生活中应用平行四边形容易变形这一性质的例子吗?

3、图片展示。

四、探究平行四边形的特征

(一)观察图形,合理猜想

请学生拿出手里的平行四边形纸,让学生大胆猜平行四边形的特征。学生发言。

(二)动手操作,验证猜想

1、操作实践。教师提示用三角板或者直尺验证。学生小组验证。

2、汇报交流验证的过程。

预设:1、测量后发现对边相等

2、延长对边不相交,所以对边平行

3、用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。

3、归纳特征。

师:现在请你用一句话概括平行四边形的特征。生用自己的语言描述。

教师帮助归纳并板书:两组对边分别平行且相等

4、应用做教材67页1题。

五、动手操作,认识“底和高”:

1、观察画出的垂直线段,告诉学生:

像这样从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫平行四边形的底。

2、请学生猜猜,平行四边形有多少条高?

3、揭示平行四边形高的画法

4、练习:画出四个平行四边形的高。

五、智慧屋(练习题)

六、全课总结:通过本节课的学习,你知道了平行四边形的哪些东西呢?

平行四边形教案 篇2

一、所在班级情况,学生特点分析

本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

二、 教学内容分析

平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

三、 教学目标

1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

四、 教学难点分析

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

五、 教学课时

一课时。

六、 教学过程

(一)复习

1、做一做,说一说。

师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。

2、复习长方形面积计算公式

我们学过长方形面积的计算公式,谁能说出长方形面积的计算

公式?

生:长方形面积=长×宽

师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

(板书课题)

(二)推导平行四边形的面积公式

1、数方格法:

师:这儿有两个图形,请同学们比较它们的.大小。

出示课件(图1):

要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

教学活动:

(1)数出平行四边形和长方形的面积各是多少?

(2)平行四边形的底和高各是多少?

(3)长方形的长和宽各是多少?

(4)通过数方格,你发现了什么?

(平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求

的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

2、割补法:

(1)学生用学具演示。

师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

教学活动:

学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

(2)教师用教具演示。

同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

出示课件(图2)。

教学活动:

在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。

3、推导、归纳平行四边形的面积计算公式:

把一个平行四边形转化成一个长方形,什么变了,什么没变?

(形状变了,面积没有变。)

也就是说拼成后长方形的面积和原平行四边形的面积相等。

拼成后的长方形的长与平行四边形的底有什么关系?(相等)

长方形的宽和原平行四边形的高有什么关系?(相等)

在问答过程中,出示课件(图3)。

师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

板书:平行四边形的面积=底×高

请看课件(图4):

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

学生口述,教师板书:

S=a×h

师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:

S=a·h

也可以把乘号省略不写,板书:

S=ah

学习活动:

将上面公式请同桌同学互相说说。

(通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

要计算平行四边形的面积,必须知道几个条件,是什么?

(两个条件,底和高。)

七、课堂练习

1、运用公式,尝试学习。

师:请同学们打开课本24页,看“试一试”题目:

出示课件(图5)。

(在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

2、巩固练习,拓展学习。

(1)选择正确的答案。

出示课件(图6)。

师:在上面A、 B、 C三个平行四边形中哪一个的面积是: 2×3=6(平方厘米),并说出理由。

(A:错误,因为3和2是两条邻边,不是对应的底和高;

(B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

(C:正确。

(通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

3、操作观察,探究学习。

出示课件(图7)。

如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)

(引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

定相等。)

讨论:

当两个平行四边形的面积相等时,它们的底与高是否也相等?

(平行四边形的面积相等,底与高却不一定相等。)

八、作业安排

课本24页“练一练”,第3题、4题。

九、附录(教学课件)

十、教学反思

平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

平行四边形教案 篇3

【学习目标】

1.能运用勾股定理解决生活中与直角三角形有关的问题;

2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

【学习重、难点】

重点:勾股定理的应用

难点:将实际问题转化为数学问题

【新知预习】

1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

【导学过程】

一、情境创设

欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

二、探索活动

活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

三、例题讲解:

1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

【反馈练习】

1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

A.20cm B.10cm C.14cm D.无法确定

3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

【课后作业】P67 习题2.7 1、4题

八年级数学竞赛辅导教案:由中点想到什么

第十八讲 由中点想到什么

线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

1.中线倍长;

2.作直角三角形斜边中线;

3.构造中位线;

4.构造中心对称全等三角形等.

熟悉以下基本图形,基本结论:

例题求解

【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

(“希望杯”邀请赛试题)

思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的.运用创造条件.

注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

(1)利用直角三角斜边中线定理;

(2)运用中位线定理;

(3)倍长(或折半)法.

【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

A.AB=MN B.AB>MN C.AB

(20xx年河北省初中数学创新与知识应用竞赛试题)

思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

(浙江省宁波市中考题)

思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

若(1)BD、CF分别是△ABC的内角平分线(如图2);

(2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

(20xx年黑龙江省中考题)

思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

(20xx年天津赛区试题)

思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

学历训练

1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

(20xx年广西中考题)

2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

(200l年山东省济南市中考题)

3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

(20xx年天津市中考题)

5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

A.40 B.48 C 50 D.56

6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

A.8cm D.7cm C. 6cm D.5cm

7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

A.不能确定 B.2 C. D. +1

(20xx年浙江省宁波市中考题)

8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

③若所得四边形MNPQ为矩形,则AC⊥BD;

④若所得四边形MNPQ为菱形,则AC=BD;

⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

⑥若所得四边形MNPQ为菱形,则AB=AD.

以上命题中,正确的是( )

A.①② B.③④ C.③④⑤⑥ D.①②③④

(20xx年江苏省苏州市中考题)

9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

(20xx年上海市中考题)

10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

(1)求证:EF=FB;

(2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

(20xx年四川省竞赛题)

13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

(重庆市竞赛题)

1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

A. B. C. D.

16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

A.1 D.2 C.3 D.

17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

A. B. C. D.

18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

(20xx年全国初中数学联赛试题)

19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

(山东省竞赛题)

20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

(1)求证:MB=MC;

(2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

(江苏省竞赛题)

21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

(1)求证AA1+ CCl = BB1 +DDl;

(2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

平行四边形教案 篇4

教学目标

1.通过生活情景与实践操作,直观认识平行四边形。

2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。

3.体会平行四边形与生活的密切联系。

教学重难点

通过生活情景与实践操作,直观认识平行四边形。

教学准备

教具:活动长方形框架点子图。

学具:七巧板。课时

安排1

教学过程

一、利用学具逐步探究

1.拉一拉

发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?

生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形。

教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形

长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。

(1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。

(2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。

(设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)

2.猜一猜:[课件出示如果这些图形都是可活动的,估计哪些能拉成平行四边形,哪些不能拉成平行四边形,为什么?

让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形。

请在导入时得到学具奖励的学生上台利用学具拉一拉,验证大家的猜测)

3.认一认:

让学生判断大屏幕上的图形是平形四边形吗?[课件出示]

学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)

4.找一找:

给出一幅画,让学生从这幅画中找到平行四边形

课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形。

师:除此之外,你还能从生活中找到它吗?

二、动手操作拓展延伸:

1.画一画:

(1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。

(2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。

2.拼一拼:

用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的"方法最巧妙。

(1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。

(2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。

三、课堂

1.这节课你有什么收获?

2.师:只要注意积累,你们的知识会越来越多!

平行四边形教案 篇5

教学内容:课本第72页。

教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。

教学过程:

一、复习。

1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)

2.填空。

0.28平方米=()平方分米=()平方厘米

32000平方米=()公顷

0.5平方千米=()公顷。

3.求下面平行四边形的面积。(口答)

(1)底18厘米,高10厘米

(2)底25分米,高4分米

(3)底12.5米,高8米

(4)底16米,比高多6米

(5)底和高都是30厘米

二、新授。

1.揭示课题。

师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)

2.出示例题。

一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

学生口述解题思路:求钢板的面积就是求平行四边形的面积。

学生独立解答

4.8×3.5?17(平方米)

答:它的面积约是17平方米

补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?

总重量=每平方米重量×平方米数

学生试做。

集体评讲。

钢板重量:3.9×17=66.3(千克)

三、巩固练习。

1.P72页做一做。

通过书面练习第1题达到巩固求平行四边形面积的计算能力。

指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的`平行四边形。找出相应的底和高的数值即可求出它的近似面积。

2.练习十七第6题。

先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)

学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)

得出:底和高分别相等的平行四边形,面积也相等。

判断:下面的平行四边形面积相等吗?

3.练习十七第7题。

学生独立完成。集体核对。

4.练习十七第8题。

先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。

四、作业。

练习十七第9题。

五、补充练习。

已知一个平行四边形的面积是28平方米,底是7米,求高是多少?

引导学生思考:因为:a·h=S

所以:h=S÷a

平行四边形教案 篇6

教学内容:

教科书第14、15页的内容。

教学目标:

1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

教学重点:

认识平行四边形。

教学难点:

感悟平行四边形的特征。

教学过程:

一、情境导入

同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

二、自主探究

同学们在生活中见过这样的图形吗?在哪见过?

看,这是教师在生活中见到的四边形,你知道这是什么吗?

课件出示:教材第14页例2图

第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。

你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

学生动手操作,尝试拼平行四边形,教师巡视指导。

组织交流,展示学生拼图结果,并让学生说说发现了什么?

(它们的`对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)

老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

三、巩固练习

1.想想做做第1题。

学生独立完成,分小组讨论, 汇报。

2.想想做做第2题。

组织学生想一想,再围一围。

3.想想做做第3题。

学生在书上描一描,教师巡视检查。

4.想想做做第4题。

学生动手完成。

5. 想想做做第5题。

学生在家长的帮助下完成。

四、全课总结

提问:今天这节课你有什么收获?

平行四边形教案 篇7

教学目标

知识技能目标

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四 边形的这两种判定方法,并学会简单运用.

过程与方法目标

1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感态度价值观目标

通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学重点:

平行四边形判定方法的探究、运用.

教学难点:

对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

教学过程

第一环节 复习引入:

( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

问题1(多媒体展 示问题)

1.平行四边形的定义是什么?它有什么作用?

2.平 行四边形还有哪些性质?

问题2

有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

第二环节 探索活动(12分钟,学生动手探究,小组合作)

活动1:

工具:两根长度相等的"笔,

两条平行线(可利用横格线).

动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

思考1.1:你能说明你所摆出的四边形是平行四边形吗?

思考1.2:以上活动事实,能用字语言表达吗?

目的:

得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

活动2

工具:两根不同长度的细纸条.

动手:能否用这两根细纸条在平面上

摆出平行四边形?

思考2.1:你能说明你们摆出的四边形是平行四边形吗?

思考2.2:以上活动事实,能用字语言表达吗?

目的:

得出平行四边形的性质:对角线互相平分的四边形是平行四边形

第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

随堂练习:

1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

(1)OA与OC,OB与OD相等吗?

(2)四边形BFDE是平行四边形吗?

(3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

(让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

学生想到的画法有:

(1)分别过A,C作BC,BA的平行线,两平行线相交于D;

(2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

第四环节 小结:(4分钟,学生回答问题)

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

第五环节 布置 作业:

B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

平行四边形教案 篇8

教材分析:

平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

教学目标:

1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。

2、掌握平行四边形面积计算公式并能解决实际问题。

3、培养学生初步的空间观念。

4、培养学生积极参与、团结合作、主动探索的精神。

教学重点:平行四边形面积的计算。

教学难点:平行四边形面积公式的推导过程。

教学准备:学具。

教学过程:

一、质疑引新

1、显示长方形图

长方形的面积怎样求?

2、电脑展示长方形变形为平行四边形。

原来的长方形变成了什么图形?它的面积怎样求呢?

二、引导探究

(一)、铺垫导引

出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。

小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?

实验、操作(小组合作):把后两幅图转化成长方形

电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。

集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)

讨论:

剪拼前后,图形的形状变了没有?面积有没有变?

做了这个实验你想到了什么?

(二)、实验探索

刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?

学生实验操作

1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。

2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。

3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。

结合学生发言提问:

你在平行四边形上沿哪条线段剪开的?

这条线段实际上是平行四边形的什么?

在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。

(三)总结归纳

问:

1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?

2、剪拼成的长方形的长和宽分别与平行四边形的`底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)

得出:平行四边形面积=底×高

追问:要求平行四边形的面积,必须知道哪两个条件?

用字母表示公式

学生自学P44~P45有关内容

集体交流:S=a×h

S=a·h

S=ah

教师强调乘号的简写与略写的方法

三、深化认识

1、验证公式

学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。

2、应用公式

a) 例题

学生列式解答,并说出列式的根据。

b) 做练一练

四、巩固练习

1、求下列图形的面积是多少?

底5厘米,高3。5厘米 底6厘米,高2厘米

2、计算下面图形的面积哪个算式正确?(单位:米)

3×8 3×6 4×8 6×8 3×4 4×6

3、求平行四边形的高是多少?

面积:56平方厘米

底:8厘米

4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

以小组为单位探讨多种想法

五、总结全课(电脑显示、学生口答)

把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。

平行四边形教案 篇9

一、教学目标:

1.使学生掌握平行四边形的意义及特征,了解它的特性。

2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。

3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。

二、教学重点:平行四边形的意义。

三、教学难点:抽象概括平行四边形的意义。

四、教学过程:

(一)、老师出示一个长方形框架.

1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?

(这个图形不是长方形了,因为它的四个角不是直角)

我们把这样的图形叫做平行四边形.在黑板右上角贴出一个平行四边形.

2.请同学们观察:黑板上还有哪些平行四边形?

(分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”)

问:同学们平时见过平行四边形吗?请举例来说.(有一种防盗网上的图形、篱笆上的图形,有的编织图案)

3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)

(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)

今天,我们又认识了一个图形——平行四边形.

(二)通过活动,再次感知平行四边形。

1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉)

师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。

学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选?

最后小组合作用图钉固定出长方形框。

围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作)

在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。)

2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。

3. 分组操作、研究平行四边形的特征。

(1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比)

(2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的过程,小组讨论平行四边形4条边和 4个角的特点。

(3)分组交流,教师小结。

4. 辨认平行四边形。

完成课本练习三十九第2题,指生订正并说出理由。

(三)巩固练习

1、判断题:

(1)长方形、正方形和平行四边形都是四边形.( )

(2)四个角都是直角的四边形一定是正方形.( )

(3)一个四边形,它的四条边相等,这个四边形一定是正方形.( )

(4)对边相等的四边形都是长方形.( )

(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( )

2.思考题:

有两个大小一样的长方形,长都是4分米,宽都是2分米.

(1)把这两个长方形拼成一个正方形,你是怎样拼的?

(2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的?

(四)全课总结

通过今天的学习你有什么收获?谈一谈。

教学反思:

在整节课的设计中,我注重将游戏、活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。

在教学设计中,我注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的空章。然后通过学生的动手操作,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。通过"变魔术"引出平行四边形,激发了学生的观察兴趣,从而使学生认识平行四边形的特性,在轻松学习中学习数学。

教学中感到不足的是设计的练习不很多,题的类型不够新颖,在练习的设计中,应能引起学生的兴趣,使学生乐于探究。

教学反思:

学生的数学学习内容应当是现实的、有意义的、富有挑战性的.,这些内容要有利于学生主动地进行观察、实验、验证、推理与交流等数学活动。因此,本节课我让学生把自己制作的长方形框架拿出来拉动后可以得到一个平行四边形引入新课,激起探究的兴趣。在探究平行四边形的特征时,引导学生小组讨论:一个平行四边形和一个三角形的框架,比较一下,它们之间有什么不同。再引导学生观察平行四边形,归纳、概括平行四边形的特征。让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征。学生学得非常积极主动:数学教学活动要帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学思想和方法,因此在数平行四边形时,引导学生有序地进行观察,主动探究规律,渗透有序思维的方法。整节课从实际出发运用现代教学手段,突破了教学的难点。反思整个教学过程,我认为教学的益处在于有效地引导了学生在活动中享受到学习的乐趣,体验到合作、交流的成功,从而大大提高了教学效果。 不足:课中的练习量还是不够,可以多做些练习突出平行四边形的特征。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:平行四边形教案  平行四边形  平行四边形词条  教案  教案词条  平行四边形教案词条  
教案教案

 小班教案拔萝卜

《小兔拔萝卜》小班体育游戏教案推荐度:《秋天》小班教案推荐度:小班安全教案推荐度:小班健康教案推荐度:小班游戏教案推荐度:相关推荐小班教案拔萝卜作为一无名无私奉...(展开)

教案教案

 科学教案

中班科学教案推荐度:《沉与浮》大班科学教案推荐度:幼儿园中班科学教案推荐度:幼儿园中班科学教案推荐度:六年级科学教案推荐度:相关推荐【精品】科学教案锦集6篇作为...(展开)

教案教案

 小马过河教案

小马过河教案推荐度:《猴子过河》教案推荐度:《我心爱的小马车》说课稿推荐度:《穷人》教案推荐度:《春酒》教案推荐度:相关推荐小马过河教案范文集合10篇作为一名为...(展开)