快好知 kuaihz

因式分解教案

初中数学因式分解教案

推荐度:

因式分解教案

推荐度:

因式分解教案

推荐度:

相关推荐

因式分解教案模板合集7篇

作为一名无私奉献的老师,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!下面是小编精心整理的因式分解教案7篇,仅供参考,希望能够帮助到大家。

因式分解教案 篇1

教学目标

1、 会运用因式分解进行简单的多项式除法。

2、 会运用因式分解解简单的方程。

二、教学重点与难点教学重点:

教学重点

因式分解在多项式除法和解方程两方面的应用。

教学难点:

应用因式分解解方程涉及较多的推理过程。

三、教学过程

(一)引入新课

1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y

(二)师生互动,讲授新课

1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

一个小问题 :这里的x能等于3/2吗 ?为什么?

想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习

合作学习

想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0

试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2

等练习:课本P162课内练习2

做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的"两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

(三)梳理知识,总结收获因式分解的两种应用:

(1)运用因式分解进行多项式除法

(2)运用因式分解解简单的方程

(四)布置课后作业

作业本6、42、课本P163作业题(选做)

因式分解教案 篇2

学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.

学习重点:同底数幂乘法运算性质的推导和应用.

学习过程:

一、创设情境引入新课

复习乘方an的`意义:an表示个相乘,即an=.

乘方的结果叫a叫做,n是

问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?

列式为,你能利用乘方的意义进行计算吗?

二、探究新知:

探一探:

1根据乘方的意义填空

(1)23×24=(2×2×2)×(2×2×2×2)=2();

(2)55×54=_________=5();

(3)(-3)3×(-3)2=_________________=(-3)();

(4)a6a7=________________=a().

(5)5m5n

猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?

说一说:你能用语言叙述同底数幂的乘法法则吗?

同理可得:amanap=(m、n、p都是正整数)

三、范例学习:

【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

2.计算:

(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

四、学以致用:

1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

⑷-4444=⑸22n22n+1=⑹y5y2y4y=

2.判断题:判断下列计算是否正确?并说明理由

⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

3.计算:

(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

4.解答题:

(1)已知xm+nxm-n=x9,求m的值.

(2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?

因式分解教案 篇3

因式分解

教材分析

因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。

教学目标

认知目标:(1)理解因式分解的概念和好处

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想

1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现潜力立意。

3.寓德育教育于教学之中。

教学方法

1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

教学过程安排

一、提出问题,创设情境

问题:看谁算得快?(计算机出示问题)

(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

二、观察分析,探究新知

(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

板书课题:§7。1因式分解

1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

三、独立练习,巩固新知

练习

1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x—2—1=(x—1+1)(x—1—1)

⑨18a3bc=3a2b·6ac

2.因式分解与整式乘法的关系:

因式分解

结合:a2—b2=========(a+b)(a—b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法正好相反。

问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

四、例题教学,运用新知:

例:把下列各式分解因式:(计算机演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

练习2:填空:(计算机演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

五、强化训练,掌握新知:

练习3:把下列各式分解因式:(计算机演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(让学生上来板演)

六、变式训练,扩展新知(计算机演示)

1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

2.机动题:(填空)x2—8x+m=(x—4),且m=

七、整理知识,构成结构(即课堂小结)

1.因式分解的概念因式分解是整式中的一种恒等变形

2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的`过程。

3.利用2中关系,能够从整式乘法探求因式分解的结果。

4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

八、布置作业

1.作业本(一)中§7。1节

2.选做题:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

评价与反馈

1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

因式分解教案 篇4

第十五章 整式的乘除与因式分解

根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

15.1.2 整式的加减

(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

四、提高练习:

1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的"值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

试化简:│a│-│a+b│+│c-a│+│b+c│

小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作 业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》

因式分解教案 篇5

课型 复习课 教法 讲练结合

教学目标(知识、能力、教育)

1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).

2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力

教学重点 掌握用提取公因式法、公式法分解因式

教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。

教学媒体 学案

教学过程

一:【 课前预习】

(一):【知识梳理】

1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.

2.分解困式的方法:

⑴提公团式法:如果一个多项式的.各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.

⑵运用公式法:平方差公式: ;

完全平方公式: ;

3.分解因式的步骤:

(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4.分解因式时常见的思维误区:

提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等

(二):【课前练习】

1.下列各组多项式中没有公因式的是( )

A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3

C.mxmy与 nynx D.aba c与 abbc

2. 下列各题中,分解因式错误的是( )

3. 列多项式能用平方差公式分解因式的是()

4. 分解因式:x2+2xy+y2-4 =_____

5. 分解因式:(1) ;

(2) ;(3) ;

(4) ;(5)以上三题用了 公式

二:【经典考题剖析】

1. 分解因式:

(1) ;(2) ;(3) ;(4)

分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。

②当某项完全提出后,该项应为1

③注意 ,

④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。

2. 分解因式:(1) ;(2) ;(3)

分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。

3. 计算:(1)

(2)

分析:(1)此题先分解因式后约分,则余下首尾两数。

(2)分解后,便有规可循,再求1到20xx的和。

4. 分解因式:(1) ;(2)

分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,

5. (1)在实数范围内分解因式: ;

(2)已知 、 、 是△ABC的三边,且满足 ,

求证:△ABC为等边三角形。

分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,

从已知给出的等式结构看出,应构造出三个完全平方式 ,

即可得证,将原式两边同乘以2即可。略证:

即△ABC为等边三角形。

三:【课后训练】

1. 若 是一个完全平方式,那么 的值是( )

A.24 B.12 C.12 D.24

2. 把多项式 因式分解的结果是( )

A. B. C. D.

3. 如果二次三项式 可分解为 ,则 的 值为( )

A .-1 B.1 C. -2 D.2

4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )

A.61、63 B.61、65 C.61、67 D.63、65

5. 计算:19982002= , = 。

6. 若 ,那么 = 。

7. 、 满足 ,分解因式 = 。

8. 因式分解:

(1) ;(2)

(3) ;(4)

9. 观察下列等式:

想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。

10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:

解:由 得:

即 ③

△ABC为Rt△。 ④

试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。

四:【课后小结】

布置作业 地纲

因式分解教案 篇6

一、运用平方差公式分解因式

教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的`因式分解。

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

重点运用平方差公式分解因式

难点灵活运用平方差公式分解因式

教学方法对比发现法课型新授课教具投影仪

教师活动学生活动

情景设置:

同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?

(学生或许还有其他不同的解决方法,教师要给予充分的肯定)

新课讲解:

从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

首先我们来做下面两题:(投影)

1.计算下列各式:

(1)(a+2)(a-2)=;

(2)(a+b)(a-b)=;

(3)(3a+2b)(3a-2b)=.

2.下面请你根据上面的算式填空:

(1)a2-4=;

(2)a2-b2=;

(3)9a2-4b2=;

请同学们对比以上两题,你发现什么呢?

事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)

比如:a2–16=a2–42=(a+4)(a–4)

例题1:把下列各式分解因式;(投影)

(1)36–25x2;(2)16a2–9b2;

(3)9(a+b)2–4(a–b)2.

(让学生弄清平方差公式的形式和特点并会运用)

例题2:如图,求圆环形绿化区的面积

练习:第87页练一练第1、2、3题

小结:

这节课你学到了什么知识,掌握什么方法?

教学素材:

A组题:

1.填空:81x2-=(9x+y)(9x-y);=

利用因式分解计算:=。

2、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

(1)1-16a2(2)9a2x2-b2y2

(3).49(a-b)2-16(a+b)2

B组题:

1分解因式81a4-b4=

2若a+b=1,a2+b2=1,则ab=;

3若26+28+2n是一个完全平方数,则n=.

由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

学生回答1:

992-1=99×99-1=9801-1

=9800

学生回答2:992-1就是(99+1)(99-1)即100×98

学生回答:平方差公式

学生回答:

(1):a2-4

(2):a2-b2

(3):9a2-4b2

学生轻松口答

(a+2)(a-2)

(a+b)(a-b)

(3a+2b)(3a-2b)

学生回答:

把乘法公式

(a+b)(a-b)=a2-b2

反过来就得到

a2-b2=(a+b)(a-b)

学生上台板演:

36–25x2=62–(5x)2

=(6+5x)(6–5x)

16a2–9b2=(4a)2–(3b)2

=(4a+3b)(4a–3b)

9(a+b)2–4(a–b)2

=[3(a+b)]2–[2(a–b)]2

=[3(a+b)+2(a–b)]

[3(a+b)–2(a–b)]

=(5a+b)(a+5b)

解:352π–152π

=π(352–152)

=(35+15)(35–15)π

=50×20π

=1000π(m2)

这个绿化区的面积是

1000πm2

学生归纳总结

因式分解教案 篇7

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

【问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=( )( );

2.x2-4=( )( );

3.x2-2xy+y2=( )2.

【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

【问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

【探研时空】计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

15.4.1 因式分解

1、因式分解 例:

练习:

15.4.2 提公因式法

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的最大公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

【例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)23a2(y-x)+4b2(y-x)2]

=-(y-x)2 [3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)23a2(x-y)-4b2(x-y)2

=(x-y)2 [3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本P167练习第1、2、3题.

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本P170习题15.4第1、4(1)、6题.

板书设计

15.4.2 提公因式法

1、提公因式法 例:

练习:

15.4.3 公式法(一)

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的.方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25; 2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2; (2)16x4-y4;

(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

三、随堂练习,巩固深化

课本P168练习第1、2题.

【探研时空】

1.求证:当n是正整数时,n3-n的值一定是6的倍数.

2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

四、课堂总结,发展潜能

运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

五、布置作业,专题突破

课本P171习题15.4第2、4(2)、11题.

板书设计

15.4.3 公式法(一)

1、平方差公式: 例:

a2-b2=(a+b)(a-b) 练习:

15.4.3 公式法(二)

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

(3) x2-0.01y2.

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:因式分解教案  因式分解  因式分解词条  教案  教案词条  因式分解教案词条  
教案教案

 《那片绿绿的爬山虎》教案

那片绿绿的爬山虎教案推荐度:《那片绿绿的爬山虎》的教案推荐度:《那片绿绿的爬山虎》教案推荐度:相关推荐《那片绿绿的爬山虎》教案15篇作为一位兢兢业业的人民教师,...(展开)

教案教案

 小学法制教育教案

中小学法制教育教案推荐度:法制教育教案小学推荐度:小学法制教育主题班会教案推荐度:相关推荐小学法制教育教案作为一名教学工作者,总归要编写教案,教案是教学蓝图,可...(展开)

教案教案

 小班社会教案

小班社会《垃圾分类》教案推荐度:小班社会《我会排队》教案推荐度:小班社会适应活动教案推荐度:小班社会《母亲节》教案推荐度:幼儿园小班社会母亲节教案推荐度:相关推...(展开)