教学目标
教学重点
教学难点
教学步骤
一、复习准备,引入问题情境
1. 口算题.(卡片)
2×5 50×2 25×4 8×125 125×80 40×25
通过刚才的口算题,你们很快算出结果,那你们想不想知道在乘法运算中有哪三对好朋友呢?
教师板书: 5×2 25×4 125×8
请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助.
2. 生比赛看谁算得快(直接写得数)
25×42×4 69×125×8 4×39×25
比赛结果都是老师算得快.
二、探究新知
1.导入:
刚才老师所以算得快,是因为老师运用了乘法的一个定律,它可以使连乘的计算题变得非常简便易算.你们想知道吗?这节课我们就共同研究乘法结合律.(板书课题:乘法结合律)
2.教学例3:
(2)引导学生:先分组试算,再从上面的例子中寻找规律?
(3)使学生明确:左边三个数相乘的积和右边三个数相乘的`积相等.
(4)同座互相试算,自己写数,看一看结果是否都是这样?
(5)反馈练习:
完成下面几组算式并观察下面每组的两个算式,你发现了什么规律?
(15×4)×10○15×(4×10) (7×8)×5○7×(8×5)
(125×80)×5○125×(80×5) (12×25)×4○12×(4×25)
(6)引导学生总结规律:三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变.
教师提问:如果用字母a、b、c分别表示这三个数,那么乘法结合律该怎样表示呢?
启发学生:(a×b)×c=a×(b×c) (教师板书)
教师说明:a、b、c表示的是大于0或等于0的整数.
(7)练习:教材第61页上面的“做一做”(学生填书),订正并说明根据.
根据运算定律,在下面的□里填上适当的数.
30×6×7=30×(□×□) 125×(8×40)=(□×□)×□
3.教学例4:
我们知道应用加法的交换律、结合律可使一些计算简便.同样我们应用乘法交换律和结合律也可以进行简便运算.(板书:简便算法)
出示例 4:计算 43×25×4演示课件“乘法结合律”出示例4
(1) 学生讨论交流:怎样计算比较简便?
(2) 指名板演,讲述计算方法.
4.教学例5:
(1)同桌讨论:这道题怎样计算比较简便?
(2)指名板演,集体订正.
(3)学生总结:由25×43×4到43×25×4这一步,根据乘法交换律.由43×25×4到43×(25×4)的根据是乘法结合律.
5.比较例4和例5:
观察比较例4和例5.
(1)学生讨论:例4和例5在应用运算定律方面有什么不同?
(2)引导学生明确:计算例4时,没有调换因数的位置,只应用了乘法的结合律,使计算简便;例5应用了交换律调换了因数的位置,然后再应用乘法结合律,计算简便.
7.练习:教材第61页下方的“做一做”.(学生口述解答)
27×4×5 8×(7×25) 12×25
教师小结:以上我们学的是应用定律如何进行简算,也就是在几个数相乘的条件下,如果其中有两个数相乘得整十、整百……的数,就可应用乘法交换律和结合律,使计算比较简便.
三、巩固发展
(2)教科书第62页第3题.
4×(15×3)=(4×15)×3
(3×4)×5×6=3×(4×5)×6
6×(3×a)=6×(a×3)
2.练习第十三4题.
用简便方法计算下面各题,说一说各应用了什么运算定律?
492×5×2 8×(25×15) 25×17×4×2
13×50×4 25×166×4 8×5×125×40
3.练习十三第5题,投影出示.(口答)
下面哪些算式运用了运算定律?为什么?
4×5=2×10 a×b×c=a×c×b a+b=b+a
1×2+3=1×3+2 a+b+c=b+a+c 1+2×3=1+3×2
4.练习十四第6题,分组讨论.
下面哪些算式运用了运算定律?为什么?
1+4+6+9=(1+9)+(4+6) 4×6×25=6×(4×25) 54+28+46=(54+46)+28
5.练习十四第8题,投影出示.学生独立填写,订正时说一说是怎样想的.
四、全课小结
这节课通过同学们的观察与思考,自己发现并总结出了乘法结合律,又根据乘法结合律对许多题目进行了简算.今后同学们做题时,要仔细观察题目特点,更准确更巧妙地把题目计算出来.
五、布置作业 练习十三第7、9题.
7题.下面各题,怎样算简便就怎样算
50×26×4 212+27+373 167+32+33 125×50×80
623-199 324+298 40×24×25 35×4×25×20
9题.在运动会开幕式上进行大型团体操表演.一共有8个方阵,每个方阵有15行,每行有15个人.一共有多少人参加表演?