快好知 kuaihz

高三数学练习题

高三的数学教学反思

推荐度:

高三数学教学反思

推荐度:

修改病句练习题及答案

推荐度:

职高数学高三教学计划

推荐度:

高三数学下学期教学计划

推荐度:

相关推荐

高三数学练习题合集

高中的教学内容与其之前的初等教育(小学)、中等教育初级阶段(初中)相比,具有更强的理论色彩。下面是小编为大家整理的关于高三数学练习题,希望对您有所帮助!

高三数学练习题1

一、选择题。

1、已知实数满足1

A.p或q为真命题

B.p且q为假命题

C.非P且q为真命题

D.非p或非q为真命题

2、已知方程的四个根组成一个首项为的等差数列,则|m-n|=____________

A.1B.C.D.

3、当时,令为与中的较大者,设a、b分别是f(x)的最大值和最小值,则a+b等于

A.0B.

C.1-D.

4、若直线过圆的圆心,则ab的最大值是

A.B.C.1D.2

5、正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为

A.B.18

C.36D.

6、过抛物线的焦点下的直线的倾斜角,交抛物线于A、B两点,且A在x轴的上方,则|FA|的取值范围是()

A.B.

C.D.

二、填空题。

7、若且a:b=3:2,则n=________________

8、定义区间长度m为这样的一个量:m的大小为区间右端点的值减去区间去端点的值,若关于x的不等式,且解的区间长度不超过5个单位长,则a的取值范围是__________

9、已知是不同的直线,是不重合的平面,给出下列命题:

(1)若,则平行于平面内的任意一条直线

上面命题中,真命题的序号是__________(写出所有真命题的序号)

10、已知向量,令求函数的最大值、最小正周期,并写出在[0,]上的单调区间。

11、已知函数

(1)若在区间[1,+]上是增函数,求实数a的取值范围。

(2)若是的极值点,求在[1,a]上的最大值;

(3)在(2)的条件下,是否存在实数b,使得正数的图象与函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由。

12、如图三棱锥S-ABC中,SA平面ABC,,SA=BC=2,AB=4,M、N、D分别是SC、AB、BC的中点。

(1)求证MNAB;

(2)求二面角S-ND-A的正切值;

(3)求A点到平面SND的距离。

高三数学练习题2

一、选择题。

1、设集合A=___则方程表示焦点位于y轴上的椭圆有()

A.5个

B.10个

C.20个

D.25个

2、不等式的解集是

A.

B.C.D.

3、的`图像关于点对称,且在处函数有最小值,则的一个可能的取值是

A.0B.3C.6D.9

4、五个旅客投宿到三个旅馆,每个旅馆至少住一人,则住法总数有()种

A.90B.60C.150D.180

5、不等式成立,则x的范围是

A.B.

C.D.

二、填空题。

1、正方体的棱长为a,则以其六个面的中心为顶点的多面体的体积是___________

2、的图象是中心对称图形,对称中心是________________

3、对于两个不共线向量、,定义为一个新的向量,满足:

(1)=(为与的夹角)

(2)的方向与、所在的平面垂直

在边长为a的正方体ABCD-ABCD中,()?=______________

三、解答题。

1、设,是的两个极值点,且

(1)证明:0

(2)证明:

(3)若,证明:当且时

2、双曲线两焦点F1和F2,F1是的焦点,两点,B(1,2)都在双曲线上。

(1)求点F1的坐标

(2)求点F2的轨迹

3、非等边三角形ABC外接圆半径为2,最长边BC=,求的取值范围。

高三数学练习题3

一、选择题

1.在△ABC中,sinA=sinB,则△ABC是()

A.直角三角形B.锐角三角形

C.钝角三角形D.等腰三角形

答案D

2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()

A.直角三角形B.等边三角形

C.钝角三角形D.等腰直角三角形

答案B

解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,

∴tanA=tanB=tanC,∴A=B=C.

3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()

A.152,+∞B.(10,+∞)

C.(0,10)D.0,403

答案D

解析∵csinC=asinA=403,∴c=403sinC.

∴0

4.在△ABC中,a=2bcosC,则这个三角形一定是()

A.等腰三角形B.直角三角形

C.等腰直角三角形D.等腰或直角三角形

答案A

解析由a=2bcosC得,sinA=2sinBcosC,

∴sin(B+C)=2sinBcosC,

∴sinBcosC+cosBsinC=2sinBcosC,

∴sin(B-C)=0,∴B=C.

5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC等于()

A.6∶5∶4B.7∶5∶3

C.3∶5∶7D.4∶5∶6

答案B

解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,

∴b+c4=c+a5=a+b6.

令b+c4=c+a5=a+b6=k(k>0),

则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.

∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.

6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为()

A.1B.2

C.12D.4

答案A

解析设三角形外接圆半径为R,则由πR2=π,

得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.

二、填空题

7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.

答案23

解析∵cosC=13,∴sinC=223,

∴12absinC=43,∴b=23.

8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.

答案2

解析由正弦定理asinA=bsinB,得3sin60°=1sinB,

∴sinB=12,故B=30°或150°.由a>b,

得A>B,∴B=30°,故C=90°,

由勾股定理得c=2.

9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.

答案7

解析∵△ABC的外接圆直径为2R=2,

∴asinA=bsinB=csinC=2R=2,

∴asinA+b2sinB+2csinC=2+1+4=7.

10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.

答案126

解析a+b+csinA+sinB+sinC=asinA=6332=12.

∵S△ABC=12absinC=12×63×12sinC=183,

∴sinC=12,∴csinC=asinA=12,∴c=6.

三、解答题

11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.

证明因为在△ABC中,asinA=bsinB=csinC=2R,

所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA

=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.

所以等式成立,即a-ccosBb-ccosA=sinBsinA.

12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.

解设三角形外接圆半径为R,则a2tanB=b2tanA

a2sinBcosB=b2sinAcosA

4R2sin2AsinBcosB=4R2sin2BsinAcosA

sinAcosA=sinBcosB

sin2A=sin2B

2A=2B或2A+2B=π

A=B或A+B=π2.

∴△ABC为等腰三角形或直角三角形.

能力提升

13.在△ABC中,B=60°,边与最小边之比为(3+1)∶2,则角为()

A.45°B.60°C.75°D.90°

答案C

解析设C为角,则A为最小角,则A+C=120°,

∴sinCsinA=sin120°-AsinA

=sin120°cosA-cos120°sinAsinA

=32tanA+12=3+12=32+12,

∴tanA=1,A=45°,C=75°.

14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4,

cosB2=255,求△ABC的面积S.

解cosB=2cos2B2-1=35,

故B为锐角,sinB=45.

所以sinA=sin(π-B-C)=sin3π4-B=7210.

由正弦定理得c=asinCsinA=107,

所以S△ABC=12acsinB=12×2×107×45=87.

1.在△ABC中,有以下结论:

(1)A+B+C=π;

(2)sin(A+B)=sinC,cos(A+B)=-cosC;

(3)A+B2+C2=π2;

(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.

2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.

高三数学练习参考答案

1①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.

2.④

解析由|AB→|=|AC→|+|BC→|=|AC→|+|CB→|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC→与CB→同向.

3.BD1→

解析如图所示,

∵DD1→=AA1→,DD1→-AB→=AA1→-AB→=BA1→,

BA1→+BC→=BD1→,

∴DD1→-AB→+BC→=BD1→.

4.AC1→=AB→+AD→+AA1→

解析因为AB→+AD→=AC→,AC→+AA1→=AC1→,

所以AC1→=AB→+AD→+AA1→.

5.AM→

解析如图所示,

因为12(BD→+BC→)=BM→,

所以AB→+12(BD→+BC→)

=AB→+BM→=AM→.

6.①

解析观察平行六面体ABCD—A1B1C1D1可知,向量EF→,GH→,PQ→平移后可以首尾相连,于是EF→+GH→+PQ→=0.

7.相等相反

8.0

解析在任何图形中,首尾相接的若干个向量和为零向量.

9.

解(1)AB→+BC→+CD→=AC→+CD→=AD→.

(2)∵E,F,G分别为BC,CD,DB的中点.

∴BE→=EC→,EF→=GD→.

∴AB→+GD→+EC→=AB→+BE→+EF→=AF→.

故所求向量AD→,AF→,如图所示.

10.

证明连结BG,延长后交CD于E,由G为△BCD的重心,

知BG→=23BE→.

∵E为CD的中点,

∴BE→=12BC→+12BD→.

AG→=AB→+BG→=AB→+23BE→=AB→+13(BC→+BD→)

=AB→+13[(AC→-AB→)+(AD→-AB→)]

=13(AB→+AC→+AD→).

11.23a+13b

解析AF→=AC→+CF→

=a+23CD→

=a+13(b-a)

=23a+13b.

12.证明如图所示,平行六面体ABCD—A′B′C′D′,设点O是AC′的中点,

则AO→=12AC′→

=12(AB→+AD→+AA′→).

设P、M、N分别是BD′、CA′、DB′的中点.

则AP→=AB→+BP→=AB→+12BD′→

=AB→+12(BA→+BC→+BB′→)

=AB→+12(-AB→+AD→+AA′→)

=12(AB→+AD→+AA′→).

同理可证:AM→=12(AB→+AD→+AA′→)

AN→=12(AB→+AD→+AA′→).

由此可知O,P,M,N四点重合.

故平行六面体的对角线相交于一点,且在交点处互相平分.

高三数学练习题答案

1.①

2.f(x0+Δx)-f(x0)

3.4+2Δx

解析Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-2×12+1=4Δx+2(Δx)2,

∴ΔyΔx=4Δx+2(Δx)2Δx=4+2Δx.

4.s(t+Δt)-s(t)Δt

解析由平均速度的定义可知,物体在t到t+Δt这段时间内的平均速度是其位移改变量与时间改变量的比.

所以v=ΔsΔt=s(t+Δt)-s(t)Δt.

5.-1

解析ΔyΔx=f(3)-f(1)3-1=1-32=-1.

6.0.41

7.1

解析由平均变化率的几何意义知k=2-11-0=1.

8.4.1

解析质点在区间[2,2.1]内的平均速度可由ΔsΔt求得,即v=ΔsΔt=s(2.1)-s(2)0.1=4.1.

9.解函数f(x)在[-3,-1]上的平均变化率为:

f(-1)-f(-3)(-1)-(-3)

=[(-1)2-2×(-1)]-[(-3)2-2×(-3)]2=-6.

函数f(x)在[2,4]上的平均变化率为:

f(4)-f(2)4-2=(42-2×4)-(22-2×2)2=4.

10.解∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1

=3Δx+3(Δx)2+(Δx)3,

∴割线PQ的斜率

ΔyΔx=(Δx)3+3(Δx)2+3ΔxΔx=(Δx)2+3Δx+3.

当Δx=0.1时,割线PQ的斜率为k,

则k=ΔyΔx=(0.1)2+3×0.1+3=3.31.

∴当Δx=0.1时割线的斜率为3.31.

11.解乙跑的快.因为在相同的时间内,甲跑的路程小于乙跑的路程,即甲的平均速度比乙的平均速度小.

12.解函数f(x)在[0,a]上的平均变化率为

f(a)-f(0)a-0=a2+2aa=a+2.

函数g(x)在[2,3]上的平均变化率为

g(3)-g(2)3-2=(2×3-3)-(2×2-3)1=2.

∵a+2=2×2,∴a=2.

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:高三数学练习题  练习题  练习题词条  高三  高三词条  数学  数学词条  高三数学练习题词条  
综合范文

 生产跟单员工作计划

生产跟单员工作计划范文生产跟单员工作计划范文制定一份好的工作计划有助于来年工作的顺利开展,生产跟单员的工作内容关系到业务跟单人员的销售工作,所以制定好生产跟单员...(展开)

综合范文

 大班班级教学计划

大班班级教学计划三篇大班班级教学计划三篇大班班级教学计划篇一一、班级基本情况1、本学期报到注册幼儿有51人,其中男生27人,女生24人。2、幼儿年龄段情况:在报...(展开)

综合范文签名

 伤感个性句子摘录

qq伤感个性签名推荐度:经典分手的伤感语录摘录推荐度:简洁的qq伤感个性签名推荐度:经典人生感悟句子摘录推荐度:经典励志的句子摘录推荐度:相关推荐【实用】202...(展开)