教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。 2、通过函数的性质及定义域范围求函数的最值。 教学难点: 从实际问题中抽象概括出运动变化的规律,建立函数关系式 教学方法:讨论式教学法 教学过程: 例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少? (1)几分钟让学生认真读题,理解题意 (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。 解法(一)列表分析: 设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。 根据题意: y =40x+80(12- x)+ 30(10-x)+50(x-4) y =40x+960-80x+300-30x+50x-200 =-20x+1060(4 x 10,且x是正整数) y =-20x+1060是减函数。 当x =10时,y有最小值ymin=860 调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。 解法(二)列表分析 设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。 y =40(12 – x)+ 80x+ 30(x –2)+50(8-x) =480 – 40x+80x+30x – 60+400 – 50x =20x +820(2 x 8,且x是正整数) y =20x +820是增函数 x=2时,y有最小值ymin=860 调配方案同解法(一) 解法(三)列表分析: 解略 解法(四)列表分析: 解略 例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系 (1)根据图象,求一次函数y =kx+b的表达式 (2)设公司获得的毛利润(毛利润=销售总价―成本总价)为s元 试用销售单价x表示毛利润s; 解:如图所示 直线过点(600,400),(700,300) 400 =600k+b 300 =700k+b k =-1,b =1000 y =- x + 1000(500 x 800) s =x(1000 – x)-500(1000 – x) =1000x – x2 – 500000 + 500x =- x2 + 1500x – 500000(500 x 800) 小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。 作业:略 探究活动 (1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米. (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元? 答案: (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x y) 2x] 14 5,即 又x 0,y 0,14 5-(5 2)x 14 3, 所以x 4时,y取最大值5.另三辆车行驶最远距离:(4 5) 200 1800(千米). (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则 所以45 x 55,即种蔬菜55亩,杂豆20亩,最大产值为121000元. (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算? 解 设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1 110x,应付给个体司机的费用为y2 800 10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x 8时,y1 y2;当x 8时,y1 y2,当x 8时,y1 y2. 综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.