我们从小就学到质量守恒定律、能量守恒定律甚至是质能守恒定律。可以说,守恒定律从诞生之日一直持续至今,都是十分坚实的物理学理论,当牛顿的三大力学定律和万有引力定律在大尺度下和小尺度下都产生了巨大误差时,守恒律依旧坚如磐石;
当然,波尔对“实验中丢失的一小部分质量”产生疑惑,甚至一度想要否定能量守恒时,实验(发现中微子)最终还是捍卫了守恒律。
如果守恒律是确实成立的,就会有一些人在思考一些问题,比如,燃烧过程中,燃烧过后,留下来的质量似乎都比反应之前要少得多,那这部分损失“质量”到底哪去了?
这个问题看似很简单,实际上并不简单,这里就涉及很多问题,比如燃烧反应以及爱因斯坦的质能等价。我们今天就来聊一聊这个问题。
燃烧反应
我们就拿“燃烧木头”来举例子。要搞清楚木头的燃烧反应,我们其实就应该先搞清楚木头的主要程度到底是什么?
木材中的主要成分是木质素、纤维素及半纤维素,这里指的是干燥的木材。纤维素是一种由葡萄糖衍生而来的结晶聚合物,大概占据总物质的41%~43%。
如果我们从元素的角度来看,构成木材的主要成分是碳,氢,氧。具体的占比是:
碳大概占44%
氢大概占6%
氧大概占42.5%
剩余的,还有大概0.5%的氮元素,以及不到1%的其他元素。我们从木材的成分来看,木材的燃烧主要就是碳燃烧。
通过初中的化学课,我们也知道,碳燃烧的结果是生成二氧化碳或者一氧化碳,这取决于是不是在充分燃烧。
我们要注意的是,燃烧的过程实际上是有氧气的介入,也就是说,有其他的反应物加入了反应,整个系统的质量理应增加的,增加的部分就是“参加氧气的质量”。
但当我们称量时,只能称量燃烧后剩余的物质,这些并不是所有的生成物,在众多生成物中,最主要的部分以二氧化碳和一氧化碳的气态形式飘走了,进入到了地球的碳循环当中,成为碳循环的一部分。
我们无法用肉眼看到这部分,更无法拿天平对这部分称重,所以,这才会让很多人觉得整个燃烧过程中少了“质量”。实际上,丢失的绝大部分“质量”,几乎99.99999999%以上的质量都是以气体的形式离开了系统。
假设,我们拥有一个封闭的系统,确保了系统内有足够氧气,而且生成的二氧化碳和一氧化碳无法从这个系统中出去,那系统在反应后再进行称量得到的结果是什么呢?
实际上,最终的称量结果还是“丢失了一部分的质量”,这里要补充一句,这里指的是秤的精度能够达到理想状态,在小数点后16位开外还能测得准。那丢失的“质量”哪去了?
质能等价
二氧化碳的燃烧,本质上是一个放热反应。这部分热最终会以能量的形式丢失掉。那这部分能量和丢失的质量到底是什么关系呢?
实际上,它们就是一回事,我们可以用爱因斯坦的质能方程E=mc^2把它们之间的关系表述出来。质能方程实际上是爱因斯坦在1905年,发表的4篇论文中的其中一篇,叫做《质能等价》的论文推导出来的方程。
在这篇论文中,爱因斯坦统一了质量和能量,他认为质量和能量是一回事,是一个物体的两个属性,质量里还有能量,能量里也还有质量。所以,木材燃烧的过程中,跑掉的能量,实际上对应着质量,通过质能方程的移项,我们就可以得到m=E/c^2,也就是说对应E/c^2的质量丢失,其中c=3*10^8m/s,所以,这个丢失的质量是极其小的,在小数点后十多位开外,很难能够测得出来,但并不是不存在这部分质量的丢失。
所以,通过木材的燃烧反应,我们最起码要搞清楚守恒律到底是什么?
实际上,质量和能量是一个东西,那么反应前后的质量是守恒的,能量也是守恒的,也因此质能是守恒的,质量和能量是等价关系,而不是质量和能量是转化关系。