快好知 kuaihz

自然杂志公布2020十大科学发现,南极上空臭氧层的修复使高速气流停止漂移

2020年注定不是平凡的一年,尽管崎岖坎坷,但是人类探索的脚步不会停止。在2020即将结束之际,《自然》(Nature)杂志盘点了今年的十大科学发现。这些发现涵盖了多个领域,甚至和我们的生活息息相关。

1、打破物质-反物质的镜像对称性

日本T2K中微子合作组织的研究发表于4月15日的《自然》杂志,报告了轻子破坏粒子-反粒子镜像对称(也称为CP对称)的可能发现。轻子的CP破缺难以观测,却可以利用中微子进行搜索。中微子有三种“味”,由它们所关联的带电轻子(电子、μ子或τ子)决定,并且可以在运动过程中从一种味转变为另一种味。如果CP对称守恒,μ中微子到电中微子转换的振荡概率将与反μ中微子到反电中微子转换的振荡概率相同。在T2K实验中,位于日本神冈天文台的地下探测器探测到穿过地球295公里的中微子(或反中微子)。实验测量了μ中微子到电中微子转换的振荡概率,结果在95%的置信水平上排除了CP守恒,这可能是宇宙中物质-反物质不对称性起源的最早标志。

2、南极上空臭氧层的修复使高速气流停止漂移

20世纪80年代中期,科学家在南极上空发现了春季大气臭氧层空洞,这揭示了人类制造的臭氧消耗物质(ODSs)对大气层的威胁。位于海拔10到20公里处的南极臭氧层空洞也影响了南半球大气环流,进而影响地表的气候。最明显的一个趋势是,夏季的高速气流开始向极地移动。高速气流是行星尺度的大气环流现象,地球上有数条环绕的高速气流带。1987年的《蒙特利尔议定书》及其随后的修正案禁止了臭氧消耗物质的生产和使用。因此,大气中臭氧消耗物质浓度正在下降,臭氧层已经出现初步的恢复迹象。Banerjee等人的研究指出,自臭氧层开始恢复以来,空洞相关的环流效应已经停止。以前曾有人注意到这种环流效应停止的趋势,但Banerjee等人首次正式将其归因于《蒙特利尔议定书》的影响。

3、史前爱尔兰贵族墓葬遗址发现乱伦证据

纽格莱奇墓(Newgrange)是爱尔兰最著名的石隧墓,也是该国最著名的史前墓地之一,由复杂的工程技术建造而成

爱尔兰都柏林三一学院的Cassidy等人研究了农耕社会的社会结构,重点研究了被埋葬在石隧墓(欧洲的一种通道式巨石墓葬建筑)中的古代贵族。纽格莱奇墓(Newgrange)是爱尔兰最著名的石隧墓,也是该国最著名的史前墓地之一,由复杂的工程技术建造而成,墓室在一条很长的石砌通道的尽头。在陵墓入口上方有一个像窗一样的开口,在一年中白天最短的那天(冬至),这个开口可以让阳光照进墓室。研究人员对墓中发现的古代人类遗骸进行了DNA分析,揭示了一场罕见且出人意料的乱伦事件。大约5000年前埋葬在纽格兰奇墓室的一名男子是一桩乱伦婚姻的后代:他的父母要么是兄弟姐妹,要么是父母与子女。这一发现让研究小组推测,与这座宏伟陵墓有关的贵族们可能是通过乱伦来维持其血统。

4、卫星图像绘制地球树木地图

Brandt等人的论文报道了他们对覆盖西非西撒哈拉和萨赫勒地区超过130多万平方公里的高分辨率卫星图像的分析结果,他们绘制了大约18亿棵树木的位置和大小。在此之前,科学家还从未在如此大的区域内绘制出如此精细的树木地图。商业卫星已经开始收集数据,能够捕捉到大小在1平方米或以下的地面物体。陆地遥感领域因此即将迎来根本性的飞跃:从侧重于综合景观尺度的测量,到有可能在大范围或全球尺度上绘制每棵树的位置和树冠大小。这一进展无疑也将根本性地改变我们思考、监测、模拟和管理全球陆地生态系统的方式。

5、杀死潜伏的HIV病毒

导致艾滋病的HIV病毒可以长期“潜伏”在宿主细胞中,几乎不进行转录,因此不会被免疫系统发现。在《自然》杂志1月同期发表的两项研究中,报道了被称为“激活并杀死”(Shock and kill)的治疗策略,旨在扭转这种潜伏期,通过增加病毒基因的表达(激活),使被感染细胞更容易被免疫系统消灭(杀死)。两组研究人员都描述了在动物模型中的干预措施,这可能是迄今为止报道的最有效的激活手段,而且是可重复的。Nixon及其同事使用了一种名为AZD5582的药物,用于激活转录因子NF-κB——HIV-1基因表达的主要刺激因子。McBrien等人则将两种免疫干预措施结合起来,先通过抗体疗法耗竭CD8+ T细胞(降低病毒转录水平的免疫细胞),再进行N-803药物治疗,该药物可激活HIV-1的转录。除了这些进展,这两项研究还展示了用药物逆转病毒潜伏相关的概念和技术挑战。

6、基因编辑破解挑食之谜

一种学名为Drosophila sechellia的果蝇只以有毒的诺丽果柑(Morinda citrifolia)为食,是什么让这个物种如此挑食?

一种学名为Drosophila sechellia的果蝇只以有毒的诺丽果柑(Morinda citrifolia)为食。与其他喜欢各种水果的果蝇相比,是什么让这个物种如此挑食?Auer等人利用基因组编辑工具CRISPR-Cas9破解了这个谜题。他们发现,相比其他果蝇,D。 sechellia体内表达气味受体22a蛋白(Or22a)的感觉神经元格外丰富,而Or22a氨基酸序列的微小变化正是果蝇D。 sechellia偏爱诺丽果的关键原因。他们还发现了其他几种可能导致这种简单行为转变的演化改变。即使是喜欢臭水果的小小果蝇,也能有力地揭示大脑如何演化出复杂的行为。

7、银河系中的快速射电暴

发表在11月《自然》杂志上的三篇论文报道了对一个快速射电暴(FRB)现象的探测,显示其来源位于银河系内。有趣的是,快速射电暴伴随着X射线的爆发。这一发现是通过综合了多台太空望远镜和地面望远镜的观测结果得出的。顾名思义,“快速射电暴”是指一种瞬态的无线电波明亮脉冲,爆发持续时间约为毫秒级。研究者于2007年首次发现了这一现象,由于存在时间很短,使得探测它们并确定其在天空中的位置变得异常困难。这是第一个被探测到具有除无线电波外辐射的快速射电暴,也是该现象在银河系内的首次发现。这三项观测也首次证实了磁星是快速射电暴的来源之一,这是目前唯一被观测验证的可产生快速射电暴的天体。值得一提的是,其中一篇论文来自中国的研究团队,第一作者为北京师范大学的林琳博士,观测结果则是来自中国“天眼”——500米口径球面射电望远镜(FAST)。

8、冷冻电镜达到原子分辨率

Yip等人和Nakane等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置

结构生物学的一个基本原理是,一旦研究人员能够以足够的分辨率直接观察到大分子,就有可能理解其三维结构与生物功能之间的联系。在今年10月《自然》杂志同期发表的两项研究中,Yip等人和Nakane等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置。两个小组使用的硬件都经过改良,突破了以往cryo-EM成像在分辨率上的限制。随着这些技术的发展,cryo-EM图像信噪比的提高将扩展冷冻电镜技术的适用性。也许这些技术的融合将使cryo-EM的结构测定达到甚至超越1埃(0.1纳米)的分辨率——这在过去几乎是不可能实现的成就。

9、干扰素缺乏可导致新冠重症

在9月在线发表于《科学》的两篇论文中,Zhang等人和Bastard等人阐明了影响感染新冠病毒后是否发展为重症的一个关键因素——干扰素尤其是I型干扰素(IFN-I)的缺乏。这种缺乏可能由不同原因导致,比如编码关键抗病毒信号分子的基因发生遗传突变,或由于抗体与I型干扰素结合并使其“中和”。I型干扰素缺乏如何导致危及生命的重症COVID-19?最直接的解释是这种缺乏导致病毒不受控制地复制和传播。另一方面,I型干扰素缺乏也可能对免疫系统功能有其他影响。IFN-I诱导通路基因突变的个体将从提供干扰素的治疗中受益。此外,那些对IFN-α和IFN-ω具有中和性抗体的人也可能受益于治疗中提供的其他类型的干扰素,如IFN-β和IFN-λ。

10、压力为何会使头发变白?

这是《自然》杂志“新闻与观点”栏目在2020年读者浏览最多的一项研究报道。目前对压力对头发变白的相对作用尚不完全清楚。头发的颜色由黑素细胞决定,这些细胞来自于毛囊凸起部分的黑色素干细胞(MeSCs)。这篇发表于1月《自然》杂志的论文是哈佛大学许雅捷团队的成果,第一作者是张兵博士。研究报告称,在压力引起的“战斗或逃跑”反应中,交感神经系统的神经元会释放出神经递质分子去甲肾上腺素;在极端应激或高水平去甲肾上腺素暴露下,黑色素干细胞的增殖分化显著增加,导致黑色素细胞大量迁移,远离毛囊隆突区,但由于没有替代的干细胞,便导致头发变白。这项研究将有助于了解压力如何影响其他的干细胞,也为寻找阻止和逆转压力的方法提供了线索。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:南极  南极词条  臭氧层  臭氧层词条  漂移  漂移词条  气流  气流词条  上空  上空词条  
科技

 中国又一项超级工程 每公里6亿人...

中国在国际上有着极高的知名度,很多国家也给中国起了不少的外号,而这几年喊得最响的外号就是基建狂魔了。因为中国在建造基础设施的时候,不仅速度非常的快,而且还能够克...(展开)

科技

 燃烧卡路里,这五款VR FPS游...

面前是一个拐角,而你完全不知道前面正等待着你的是什么?于是你握紧手中的武器,双眼全神贯注于周围一片的寂静,而你似乎能听到心脏的跳动声……这正是第一人称射击游戏所...(展开)