快好知 kuaihz

如何求X轴的截距

在本文中:简单的二元一次方程二元方程的截距

在代数中,二维坐标图含有横轴(x轴)和与横轴垂直的纵轴(y轴)。函数所示的线条和坐标轴相交得到的交点所示的数值即为截距。y轴上的截距就是线条与y轴相交的点所代表数值,同理,x轴截距就是线条落在x轴的交点所示数值。依据函数的不同,求x轴截距的难度也有差异。二元一次方程截距的求解并不复杂,而求二次方程的截距则略为复杂。本文将教你如何求着两种方程的截距。

方法

1:简单的二元一次方程

1:以0作为y值代入式子中的y。在直线穿过y轴时,此交点的y值等于0。

方程2x + 3y = 6为例,将0作为y值带入后,得到2x + 3(0) = 6,将其简化为2x = 6.

2:求x。求x的值就是将等式两边的式子同时除以某个数值或式子,从而使等式左侧得到系数为1的x。

在本例(2x = 6)中,将式子两边同时除以2,得到2/2 x = 6/2,最后化简得到x = 3。所以等式2x + 3y = 6在x轴上的截距为3。

你可以将以上的步骤应用在求等式ax^2 + by^2 = c的截距中。在本例中,将y=0代入式子中,得到x^2 = c/a。接着计算x的值,此时就要将等式开平方求x值。进行开平方计算后得到两个结果,一个正数和一个负数。两数相加得到0。

方法

2:求二元方程的截距

1:将二元方程转化为ax^2 + bx + c = 0形式。这是书写二元方程的标准形式。其中a代表x的2次方的系数,b是x的系数,c是常数项。

在这部分中,我们以x^2 +3x - 10 = 0为例。

2:求解方程中的x。二元方程的解法有很多种,接下来我们着重介绍利用因式分解和二次公式求解二元方程

因式分解是将一个二次方程分解为两个简单的代数方程来求解,两个代数方程的乘积即为二次方程的式子。通常来说,a值和c值是正确分解因式的关键。在本式中,c的绝对值10等于2乘以5。且本式中b的绝对值小于c的绝对值,这就说明2和5极有可能存在于分解的因式中。又因为5减去2等于3,所以分解的因式为x + 5和x - 2。因此二次方程可被表示为(x + 5)(x - 2) = 0,因此该式的x截距为-5 (-5 + 5 = 0)和2 (2 - 2 = 0)。

使用二次公式时,需要将a,b和c的值代入二次公式的(-b +或- SQR (b^2 - 4 ac))/2a(SQR代表平方根)中来求x的值。

分别将1, 3,和-10代入公式,得到(-3 +/- SQR (3^2 - 4(1)(-10)))/2(1)。化简计算后平方根里变为9 -(-40)或9+40,即平方根里为49,所以公式变为(-3 +或- 7)/2。通过进一步计算,结果为2或者-5。

简单的二元一次方程在坐标图上是一条直线,而二次方程在坐标图上是一条U形或V形抛物线。二次方程在坐标图里可能不存在x轴截距,也可能存在1个或2个x轴截距。

小提示

二元一次方程的例子中,如果将x等于0代入方程后,你就可以求得该方程在y坐标轴上的截距。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:如何求X轴的截距  如何  如何词条  如何求X轴的截距词条  
综合

 如何画柱状图

自己制作柱状图柱状图是用来对比各类数据的图,可以是水平柱状图或竖直柱状图,其中柱长和数据量成比例。 柱状图中各类数据的基底排列顺序不太重要,不过时间顺序对于一段...(展开)

综合

 掌握这招,写作素材不用愁

有很多想写作的人平时在下笔时总会出现这样的尴尬:不知道写什么,脑袋空空如也。我就是一个典型的例子。其实这是典型的没素材,自然下笔如挤牙膏,甚至挤都挤不出来,那有...(展开)