切勿死记硬背
如果用一句话概括数学学习的窍门,那就是切勿死记硬背。一旦死记硬背,你就不会去思考为什么,而且即便能靠死记硬背定理、公式、解题方法等得到好成绩,也无法培养逻辑思维能力。我认为在学习数学的过程中,遇到问题一味生搬硬套是最烂的一种方法,因为死记硬背会让学生们养成逃避的毛病,认为就算不懂也没关系,只要记住就行。在培养逻辑思维能力的过程中,这个毛病会是一个非常大的障碍。因此,通过死记硬背学习数学是百害而无一利的。
当然,我这么说并不意味着学数学可以什么都不用记,理解新学的知识和已学的知识,主动“思考”不去死记硬背的方法才是学习数学的基础。面对新知识,如果你不想死记硬背,就要抓住其中的“玄机”,理解这个知识点的深层意义。如果能做到这一点,那么对你而言,数学就不只是知识,而是能让你受用一生的智慧。
多问“为什么”
既然学习数学的目的是解决各种未知的问题,那么你只用常规方法解决常规问题就不会有所进步。我们应该做的是从常规性问题的解题方法中,总结出适用于任何问题的解决技巧和捷径,而这些重要的技巧和捷径很难通过定理、公式和解题方法加以表现,这也正是学习数学的难点所在。
我曾多次受邀编撰习题集答案,在接受委托时,出版社常常会提出各种要求,比如“篇幅控制在XX页”,更严格的时候甚至要求控制“在XX行”。当然,出版社的要求也可以理解,为了在有限的篇幅内撰写内容,我有时只能把答案的精髓总结出来,可结果却不尽人意:在不知情的人看来,不完整的答案会让他们如丈二和尚般摸不着头脑;本身就不擅长数学的人会因此气馁,认为“这种问题谁能想得出来啊”;也有人会陷入死记硬背的漩涡,认为“这道题就应该这么解”,而不去理会为什么……如此一来,这些“参考答案”反而成了导致数学学习方法错误的罪魁祸首。
实际上,很多教材、教辅中的答案,字里行间都隐藏着严密的思考过程,所以在阅读答案时,你应该像读诗那样品读“字里行间”的意思,想象答题者是如何思考的,这一点很重要。
数学本身是有魔力的,它能让人不自觉地去思考并提出疑问:
“为什么?”
“为什么算式要这样变形?”
“为什么要在这里画辅助线?”
面对不断涌现的问题,你无需感到不安,对那些书中给出的法则提出疑问,就说明你找到了学习数学的关键,换言之,这些问题能让我们发现隐藏在解题过程中的数学式思维方法。如果你以前看到答案觉得不知其所云,认为靠自己永远也解不出来,那么你现在只要勇于提出一系列“为什么”,相信总有一天你会觉得“原来如此”了。
重新定义
假设有人突然要拜托你买猪肉、洋葱、胡萝卜、马铃薯、月桂、苹果还有蜂蜜,可你既没带便条,也没带手机,该如何记住这些东西呢?有点儿不自信?我倒是有自信至少忘掉一两个(笑)。
但是,如果你知道这些东西都是做咖喱的材料,又会如何呢?
做过咖喱的人,通常都知道做咖喱需要哪些材料(超市里的咖喱酱包装背面也有),基本上可以一项不漏地买回来。乍看之下毫不相关的食材,如果打上“咖喱材料”的标签,彼此之间就建立了联系,相信你一下子就能记住了。
学习也一样,自己觉得有意义的东西不容易忘记,反之,那些你完全不明白的事物,不管做多少次,转头就会忘掉。在学习新东西时,一定要先思考一下它的“意义”。就拿学习数学来说,你可以给每个定理、公式、解题方法都赋予新的定义,尽可能思考能否将新的知识点与其他已学的定理、解题方法联系起来(心理学上的建构主义理论)。这样做不仅能帮助记忆,还能让你抓住知识点的本质。
证明定理和公式
定理和公式在解题时用起来非常方便,但你要知道,结果并不是最重要的。正如我之前反复强调的,数学最重要的是过程,记住定理和公式虽然可以为你带来便利,但知道这些定理和公式从何而来才是最重要的。
初、高中学习的定理和公式,凝聚了5000多年数学史中的精髓,它们可以说是各个时代数学天才们的智慧结晶,而这些智慧的本质,则潜藏在证明的过程中。
数学能力是一种逻辑思维能力,而逻辑思维能力也就是思考问题的能力。罗马不是一天建成的,数学问题也绝不是灵光一闪便能解决的。在解决未知的问题时,如果你只是原地等待灵感突现,就一定会落空,只有一步一个脚印步步推进,才可能得到答案。
话虽如此,但我们仅凭自己的知识可能无法一下子找出答案,这时就需要借助过去数学天才们遗留下来的定理、公式、逻辑思维方法等慢慢积累。对我们而言,这些留下智慧结晶的天才无疑是最好的老师,那他们又是怎样思考得出这些定理和公式的呢?
当你通过认真研究这些已得出结论的定理和公式,独立完成证明,就会感觉自己变聪明了。相信我,这不是错觉,因为你确实已经掌握了一流的数学能力!
“闻→思→教”三步走
孔子在《论语》中说:“默而识之,学而不厌,诲人不倦。”
这里所说的“闻→思→教”,是学习的基本态度。在学习新知识时,重点是抛弃成见,多听他人教诲(或自己读书)。面对新的知识,无论是认为“小菜一碟”,还是觉得“谈何容易”,都会妨碍到你的学习,所以我们首先要以开放的态度去吸收新知识。
其次,正如前面所说的,面对新知识应该多问“为什么”,然后认真思考自己提出的问题。许多人到这步就会停止,认为经过仔细思考,疑问已经基本解开,觉得自己都明白了,于是满足现状。
然而,我接下来要讲的内容才是最重要的。这一步要求你转换角色,当一回老师,将自己刚刚“明白”的知识传授给不懂的人,如此一来,你理解得不充分的部分就会突显出来。俗话说的好,教会他人是最好的学习方法。
等一下,我又要说“但是”了!但是,以我的经验来看,只是把数学当作数学来教,除非对方非常喜欢数学,否则根本没人愿意听,更糟的是,也许只要一提到算式,对方就会皱起眉头……虽然你想尽可能讲得有趣,但如果发现自己并未充分理解问题,无法调动对方的兴趣,一定会觉得非常遗憾。
教会他人是最好的学习方法,要想激发学习者的好奇心,只是传授公式、定理和解题方法是远远不够的,一定要活用身边的事物,借助这些东西巩固知识。