快好知 kuaihz

高中数学导数知识点总结及应用

知识点总结

一. 导数概念的引入

1.  导数的物理意义:

瞬时速率。一般的,函数y=f(x)在x=

处的瞬时变化率是

2.  导数的几何意义:

曲线的切线,当点

趋近于P时,直线 PT 与曲线相切。容易知道,割线的斜率是

当点

趋近于 P 时,函数y=f(x)在x=

处的导数就是切线PT的斜率k,即

3.  导函数

当x变化时,

便是x的一个函数,我们称它为f(x)的导函数. y=f(x)的导函数有时也记作

,即

二. 导数的计算

基本初等函数的导数公式:

导数的运算法则:

   

复合函数求导 :

y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数

三、导数在研究函数中的应用

1.  函数的单调性与导数:

  一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内

(1) 如果

>0,那么函数y=f(x)在这个区间单调递增;

(2) 如果

<0,那么函数y=f(x)在这个区间单调递减;

2.  函数的极值与导数:

极值反映的是函数在某一点附近的大小情况。 

函数y=f(x)的极值的方法有:

(1)如果在

附近的左侧

>0 ,右侧

<0,那么

是极大值;

(2)如果在附近的左侧

<0 ,右侧

>0,那么

是极小值;

3.  函数的最大(小)值与导数:             

函数y=f(x)在[a,b]上的最大值与最小值的步骤:

(1)求函数y=f(x)在[a,b]内的极值;

(2) 将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四.  推理与证明

(1)合情推理与类比推理

根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:

(1)   找出两类事物的相似性或一致性;

(2)   用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

(3)   一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;

(4)   一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

(2)演绎推理(俗称三段论)

由一般性的命题推出特殊命题的过程,这种推理称为演绎推理。

(3)数学归纳法

1.   它是一个递推的数学论证方法。

2.   步骤:

A. 命题在 n=1(或

)时成立,这是递推的基础;

B.假设在 n=k 时命题成立; 

C. 证明 n=k+1 时命题也成立。

完成这两步,就可以断定对任何自然数(或n≥

,且n∈N)结论都成立。

证明方法:1、 反证法;2、分析法;3、综合法;

解题技巧

热点考向一  导数在方程中的应用

[典例1]

已知函数f(x)=x2-(a+4)x-2a2+5a+3(a∈R).

(1)当a=3时,求函数f(x)的零点;

(2)若方程f(x)=0的两个实数根都在区间(-1,3)上,求实数a的取值范围.

[方法规律] 

利用导数解决函数零点(方程的根)问题的主要方法

(1)利用导数研究函数的单调性和极值,通过对极值正负的讨论研究根的问题;

(2)利用数形结合研究方程的根;

(3)利用导数结合零点定理研究根的存在问题;

(4)转化为不等式或最值问题解决函数零点问题.

热点考向二  导数在不等式中的应用

[方法规律] 

利用导数解决不等式问题的类型

(1)不等式恒成立:基本思路就是转化为求函数的最值或函数值域的端点值问题.

(2)比较两个数的大小:一般的思路是把两个函数作差后构造一个新函数,通过研究这个函数函数值与零的大小确定所比较的两个数的大小.

(3)证明不等式:对于只含有一个变量的不等式都可以通过构造函数,然后利用函数的单调性和极值解决.

▍ 编辑:Wulibang(ID:2820092099)

▍ 来源:综合网络

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:高中数学导数知识点总结及应用  导数  导数词条  知识点  知识点词条  高中  高中词条  数学  数学词条  总结  总结词条