【解析】
试题分析:
(1)根据一元一次方程的定义,x的二次项系数是0,且一次项系数不等于0,据此即可求得m的值;
(2)把m的值代入求得方程,然后解方程进行判断即可.
试题解析:
(1)根据题意得:|m|-2=0且-(m+2)≠0,
解得:m=2;
(2)当m=2时,原方程是-4x-6=0,
如图,CD是Rt△ABC斜边上的高.(1)求证:∠ACD=∠B;(2)若AC=3,BC=4,AB=5,则求CD的长.
工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm平方时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
【解析】
试题分析:
(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;
(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.
试题解析:
(1)如图所示:
设裁掉的正方形的边长为xdm,
由题意可得(10﹣2x)(6﹣2x)=12,
即x2﹣8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2;
(2)∵长不大于宽的五倍,
∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,
设总费用为w元,由题意可知
w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,
∵对称轴为x=6,开口向上,
∴当0<x≤2.5时,w随x的增大而减小,
∴当x=2.5时,w有最小值,最小值为25元,
答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.