快好知 kuaihz

高考数学函数求值域的十二种方法?

 一.观察法

  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域

  例1求函数y=3+√(2-3x)的值域

二.反函数法

  当函数的反函数存在时,则其反函数的定义域就是原函数的值域

  例2求函数y=(x+1)/(x+2)的值域

三.配方法

  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

  例3:求函数y=√(-x2+x+2)的值域

四.判别式法

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域

  例4求函数y=(2x2-2x+3)/(x2-x+1)的值域

五.最值法

  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域

六.图象法

  通过观察函数的图象,运用数形结合的方法得到函数的值域

  例6求函数y=∣x+1∣+√(x-2)2的值域。点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

 七.单调法

  利用函数在给定的区间上的单调递增或单调递减求值域

  例7求函数y=4x-√1-3x(x≤1/3)的值域

八.换元法

  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域

  例8求函数y=x-3+√2x+1的值域

 九.构造法

  根据函数的结构特征,赋予几何图形,数形结合。

  例9求函数y=√x2+4x+5+√x2-4x+8的值域

 十.比例法

  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域

  例10已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域

 十一.利用多项式的除法

  例11求函数y=(3x+2)/(x+1)的值域

十二.不等式法

  例12求函数Y=3x/(3x+1)的值域

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:值域  值域词条  函数  函数词条  数学  数学词条  高考  高考词条  方法  方法词条