快好知 kuaihz

因式分解的方法与技巧

因式分解的方法与技巧

导语:因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式

因式分解的方法与技巧

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x3 -2x 2-x

x3 -2x2 -x=x(x2 -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式

例2、分解因式a2 +4ab+4b2

解:a2 +4ab+4b2 =(a+2b)2

3、 分组分解

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m2 +5n-mn-5m

解:m2 +5n-mn-5m= m 2-5m -mn+5n

= (m2 -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x2 -19x-6

分析: 1 ×7=7, 2×(-3)=-6

1×2+7×(-3)=-19

解:7x2 -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解

例5、分解因式x2 +6x-40

解x2 +6x-40=x2 +6x+( 9) -(9 ) -40

=(x+ 3)2 -(7 ) 2

=[(x+3)+7]*[(x+3) – 7]

=(x+10)(x-4)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x4 –x3 -6x2 -x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)

解:2x 4–x3 -6x2 -x+2=2(x4 +1)-x(x2 +1)-6x2

=x2 {2[x2 + ()2]-(x+ )-6}

令y=x+ ,

x2 {2[x2 +( )2]-(x+)-6}

= x2 [2(y2 -2)-y-6]

= x2 (2y2 -y-10)

=x 2(y+2)(2y-5)

=x2 (x+ +2)(2x+ -5)

= (x2 +2x+1) (2x2 -5x+2)

=(x+1)2 (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x1,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x 2)(x-x3 )……(x-xn ) (一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)

例8、分解因式2x4 +7x3 -2x2 -13x+6

解:令f(x)=2x4 +7x3 -2x2 -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1 ,

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图象法(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的)

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解

f(x)= f(x)=(x-x1 )(x-x2 )(x-x3)……(x-xn )

例9、因式分解x3 +2x2 -5x-6

解:令y= x3 +2x2 -5x-6

作出其图象,可知与x轴交点为-3,-1,2

则x3 +2x 2-5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解

例10、分解因式a2 (b-c)+b2 (c-a)+c2 (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a2 (b-c)+b2 (c-a)+c2 (a-b)=a2 (b-c)-a(b2 -c 2)+bc(b-c)

=(b-c) [a2 -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x 3+9x2 +23x+15

解:令x=2,则x3 +9x 2+23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x3 +9x2 +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解

例12、分解因式x4 –x3 -5x2 -6x-4

如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式

解:设x4 –x3 -5x2 -6x-4=(x2 +ax+b)(x2 +cx+d)

= x4 +(a+c)x3 +(ac+b+d)x2 +(ad+bc)x+bd

从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4

所以 解得

则x4 –x3 -5x2 -6x-4 =(x 2+x+1)(x2 -2x-4)。

因式分解应该注意哪些问题?

一、要注意到“1”的存在而避免漏项

在提取公因式时,多数同学易忘记观察被分解多项式的项数是多少,更没有理解因式分解与乘法运算之间的关系,而在分解因式时应注意到“1”在这个多项式分解中的存在和作用。

例1分解因式23x+5xy+x=x(3x+5y)

错解: 23x+5xy+x=x(3x+5y),这样就漏了“x”这一项,提出“x”后应由“1”来补其位。 正解: 23x+5xy+x=x(3x+5y+1)

二、提取公因式时要注意符号的变化

牢记在有理数的乘法运算中“括号前是负号,去括号时括号里的各项都要变号”这一运算律,而因式分解与乘法运算之间互为逆变形,首相为负号应提取负号,但加括号并且括号里的`各项都要变号。

例2分解因式2-10x+10xy.

错解: 2-10x+10xy=-10x(x+y),错在括号里没有变号。

正解: 2-10x+10xy=-10x(x-y).

三、要注意整体与个体之间的关系

在公式22a-b=(a+b)(a-b) ,222a+2ab+b=(a+b), 222a-2ab+b=(a-b)中,a、b代表符合这一特点的整个代数式里的整个因式,而不只代表这个代数式里的某一个因式。如216x是表示2(4x),而不是216x.因此再分解因式时要注意整体与个体之间的关系。

例3分解因式29x-1

错解: 29x-1=(9x+1)(9x-1),错在29x-1只能写为2(3x)不能写为29x. 正解: 29x-1=(3x+1)(3x-1).

四、要注意分解完整

因式分解即是把一个多项式分解为几个不能再分解因式的乘积形式,因式分解需要分解到不能再分解为止。

例4分解因式4216x-72x+81

错解: 4216x-72x+81=22(4x-9),很多学生就分解到此为止,但没有注意到24x-9还可以分解。因为24x可以写成2(2x),9可以写成2(3),故24x-9符合平方差公式的特点应继续分解

正解: 4216x-72x+81=22(4x-9)=2[(2x+3)(2x-3)]=22(2x+3)(2x-3) 例5分解因式4x-9 (在实数范围内)

错解: 4x-9=22(x+3)(x-3),错在许多学生还未注意到2(x-3)中的“3”还可以写为

2(3),因此2(x-3)写为2x-2(3),这就符合平方差公式的特点应继续分解

正解: 4x-9=22(x+3)(x-3)=2(x+3)(x+3)(x-3) 五、应注意因式与整式乘法的关系

因式分解是要把一个多项式分解为几个整式的乘积形式;然而整式的乘法是要把几个正式的乘积形式化成一个多项式的形式。 例6分解因式4224a-2ab+b.

错解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)=2222(a+2ab+b)(a-2ab+b),错在又把22(a+b)(a-b)化为了2222(a+2ab+b)(a-2ab+b)

正解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:因式分解的方法与技巧  因式分解  因式分解词条  技巧  技巧词条  方法  方法词条  
家长加油站

 成字怎么组词 成字如何组词

1、成的组词:一事无成、成语、成绩、成长、完成、马到成功、成为、组成、众志成城、养成、积少成多、成熟、聚沙成塔、浑然天成。2、一事无成,意思是连一样事情也没有做...(展开)