八年级下学期数学教学工作计划
推荐度:
八年级下学期数学教学工作计划
推荐度:
八年级下学期数学教学工作计划
推荐度:
相关推荐
八年级下学期数学教学工作计划范文汇编5篇
人生天地之间,若白驹过隙,忽然而已,前方等待着我们的是新的机遇和挑战,现在就让我们好好地规划一下吧。相信大家又在为写计划犯愁了?下面是小编为大家整理的八年级下学期数学教学工作计划5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级下学期数学教学工作计划 篇1
一、教学内容:
1.分式
2.反比例函数
3.勾股定理
4.四边形
5.数据分析
二、课程学习目标
(一):
1、以描述实际问题中的数量关系为背景,抽象处分式概念,体会分式是刻画现实世界中数量关系的一类代数式。
2、类比分数的基本性质,并了解分式的基本性质,掌握分式的约分和通分法则。
3、类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。
4、结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。
5、结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。
(二):
1、理解反比例函数的概念,根据实际问题中的条件确定反比例函数的解析式y=(k为常数,k≠0),能判断一个给定的函数是否为反比例函数。
2、能画出反比例函数的图象,会用待定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析法和图象的各自特点。
3、能根据图象数形结合地分析并掌握反比例函数y=(k为常数,k≠0)的函数关系和性质,能利用这些函数的性质分析和解决一些简单的实际问题。
4、进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法。
(三):
1、体验勾股定理的探索过程,会运用勾股定理解决简单问题。
2、会运用勾股定理的逆定理判定直角三角形。
3、通过具体例子,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。
(四):
1、掌握平四边形、矩形、菱形、正方形、体形的概念,了解它们之间的关系。
2、探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并能用这些知识进行有关的证明和计算。
3、探索并了解线段、矩形、平行四边形、三角形的重心的物理意义。
4、进一步培养学生的合情推理能力、逻辑思维能力、推理论证能力。
(五):
1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解权的意义,能选择适当的统计量表示数的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
5、能用计算器统计功能进行统计,进一步体会计算器的`优越性。
6、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生产和生活中的作用,养成用数据说话的习惯和实事求是的科学态度。
三、教学进度表
四、改进的方法措施
1、教学中始终要培养和激发学生的学习兴趣,使其爱学乐学。
2、掌握好每章节的知识点并加强练习巩固,发展能力。
3、每章进行小结性检测,分析知识技能掌握情况并进行插缺补漏。
4、每月进行一次月考,有目的地进行部分重点知识技能的巩固、训练。
5、与学生拉近距离,进行心理沟通,进行学习目的、理想且为之而奋斗。
八年级下学期数学教学工作计划 篇2
一、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做。
二、教材分析
第十六章二次根式本章的主要内容是二次根式的概念及二次根式的加减乘除运算。本章的重点是二次根式的运算,难点是对二次根式进行化简,二次根式的取值范围等。
第十七章 勾股定理 本章的主要内容是勾股定理及逆定理的概念。本章要使学生能运用勾股定理解决简单问题、用勾股定理的"逆定理判定直角三角形。同时注重介绍数学文化。本章的重点是勾股定理及其证明,直角三角形的边角关系,解直角三角形(三角形边角关系的应用),难点是运用灵活运用勾股定理解决实际问题,对锐角三角函数的理解及其合理应用,解决实际问题。
第十八章平行四边形本章的主要内容是掌握各种四边形的概念、性质、判定及它们之间的关系并能应用相关知识进行证明和计算。本章的重点是平行四边形的定义、性质和判定。难点是平行四边形与各种特殊平行四边形之间的联系和区别。本章的教学内容联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不大,教学中要注意用“集合”的思想,分清四边形的从属关系,梳理它们的性质和判定方法。
第十九章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图像的性质,最后利用一次函数及其图像解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第二十章 数据的分析 本章是在前面学习数据的描述的基础上的进一步学习。本章的主要内容是研究平均数、中位数、众数、极差、方差等统计量的统计意义,并能运用这些统计量分析数据的集中趋势和离散情况。教学中要合理使用计算器,发挥计算器在处理数据中的作用,使学生的学习重点集中在理解统计量的统计意义和体会统计思想上来
三、教学措施
1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,尽力摧行小组合作,争取充分掌握学生动态,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。
4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。
5、教学中注重自主学习、合作学习、探究学习。
6、经常听取学生良好的合理化建议。
八年级下学期数学教学工作计划 篇3
一、学生基本情况(基本知识、基本技能掌握情况、能力发展、学习心理)
上学期期末考试的成绩平均分为分,最低分人几格,及格率为探索与实践度”,绝不可拔高难度,随意扩大训练量。第五章《数据的整理与初步处理》一章是在前几册统计与概率内容的基础上,使学生学会选用合适的统计图表,进行数据整理,清晰而又准确地表示所收集的数据。同时通过实际情景,引入平均数、中位数与众数以及方差、极差与标准差,较为正确地概括、描述并比较所得到的数据,使学生掌握分析处理数据的一些基本方法,用数学语言表述自己的见解。
二、教学工作目标和教学要求
1、知识与能力目标
(1)了解分式概念,会利用分式的基本性质进行通分和约分,会进行简单的分时加、减、乘、除运算。
(2)会解可化为一元一次方程的分式方程,并会列分式方程解决简单的实际问题。
(3)了解常数、变量的意义,了解函数的概念和三种表示方法,能举出函数的实例;能结合图象对简单实际问题中的函数关系进行分析:会求函数自变量的取值范围和函数值;能用适当的函数表示方法刻画某些实际问题中变量之间的关系;了解对函数关系的分析,尝试对变量的变化规律进行初步预测。
(4)结合具体情境体会一次函数、正比例函数、反比例函数的意义,能根据已知条件确定一次函数和反比例函数的解析式;会画一次函数和反比例函数的图像;掌握一次函数和反比例函数的图像和性质,学会一些简单应用。
(5)了解全等三角形的概念,探索并掌握两个三角形全等的条件,且能用它证明简单的数学问题;了解命题、公理、定理的含义,会区分命题的题设和结论;理解逆命题和逆定理的概念,并能判断其真假;了解尺规作图的步骤并掌握下列基本作图:作一条线段等于已知线段、作一个角等于已知角、作已知角的平分线、经过一点作己知直线的垂线、作己知线段的垂直平分线。
(6)探索并掌握平行四边形(矩形、菱形、正方形)的`判定条件,学会一些简单应用;探索并掌握等腰梯形的判定方法,进一步学会运用分解梯形成平行四边形和三角形解决一些简单的问题。
(7)会对数据进行收集整理,并能计算数据的平均数、中位数、众数、极差、方差、标准差,并会结合实际情境体会它们的意义,了解它们各自的适用范围,从而在解决实际问题,做到合理地选用。
2、过程与方法目标
(1)经历分式基本性质、零指数幂、负整指数幂、函数图像、全等三角形判定方法、平行四边形(矩形、菱形、正方形)的判定方法等探索过程,培养学生观察、猜想、归纳、总结、概括的能力。
(2)经历比较一次函数和反比例函数图像及其性质异同的过程,培养学生的分析鉴赏和合情推力能力。
(3)经过一次函数和反比例函数图像探讨其性质,体会数形结合思想。
(4)通过利用一次函数、反比例函数、分式方程解决实际问题的过程,培养学生将实际问题转化为数学问题的能力和数学建模能力。
(5)经历探索一次函数与二元一次方程组和一元一次不等式关系的过程,体会函数与方程和一元一次不等式之间的关系,培养学生的联想方法和探索能力。
(6)通过对三角形全等条件、平行四边形(矩形、菱形、正方形)判定方法、等腰梯形判定方法的探索及运用的过程,培养学生的分析能力、逻辑思维能力、演绎推理能力、逆向思维能力和发散思维能力等。
3、情感、态度与价值观目标
(1)通过探索的过程发现分式的基本性质、一次和反比例函数的图像及性质、三角形全等条件、平行四边形(矩形、菱形、正方形)及等腰梯形判定方法,体现探索的乐趣,增强学生学习数学的兴趣和信心。
(2)通过体验探索的成功与失败,培养学生克服困难的勇气。
(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。
(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。
三、教学的重点和难点以及关键
重点:
(1)掌握分式的基本性质、四则运算、分式方程的解法及列分式方程解应用题。
(2)掌握一次函数和反比例函数的图像及其性质并能用它解决简单的实际问题。
(3)掌握全等三角形的判定定理并能用它进行简单地推理证明。
(4)掌握平行四边形(矩形、菱形、正方形)及等腰梯形判定方法,井能熟练地进行推理证明。
(5)掌握数据的收集整理方法,并能用平均数、中位数、众数、极差、方差、标准差对实际问题的数据进行分析处理且初步能进行预测。
难点:
(1)分式的四则混合运算和列分式方程解应用题。
(2)函数概念的理解,一次函数和反比例函数的图像及其性质的综合运用。
(3)利用全等三角形判定定理、平行四边形(矩形、菱形、正方形)判定定理、等腰梯形判定定理进行推理证明。
(4)利用平均数、中位数、众数、极差、方差、标准差对实际问题的数据进行分析处理且初步能进行预测。
四、达到本学期教学目标要求将采取的具体措施教学方法上做哪些改革?
l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对的依次获得前十名,以资鼓励。
7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。
8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。
五、达到本学期教学目标要求将采取的教改方法
1、在分式基本性质的探索中采用类比方法,在分式运算法则的探索中采用类比发现法。
2、在一次函数和反比例函数的图像及其性质的探索中采用发现法。
3、在三角形全等条件的探索中采用自主探究法。
4、在平行四边形(矩形、菱形、正方形1判定定理、等腰梯形判定定理的探索中采用自学辅导法。
六、课外活动内容、时间和方式
内 容 花边图案设计
时 间 第11周
方 式 个人自行设计,小组推荐优秀者参加班级评选。
七、教学进度安排
略
八年级下学期数学教学工作计划 篇4
一、教学目标
(一)教学知识点
1.平行线的性质定理的证明.
2.证明的一般步骤.
(二)能力训练要求
1.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力2.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.
(三)情感与价值观要求
通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.
二、教学重、难点
教学难点:理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.
三、教具准备
投影片六张
第一张:议一议(记作投影片A)
第二张:想一想(记作投影片B)
第三张:符号语言(记作投影片C)
第四张:命题(记作投影片D)
第五张:证明的一般步骤(记作投影片E)
第六张:练习(记作投影片F)
四、教学过程设计
1.创设情景,引入新课 [师]上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?
这节课我们就来研究如果两条直线平行.
2.讲授新课
[师]在前一节课中,我们知道:两条平行线被第三条直线所截,同位角相等这个真命题是公理,这一公理可以简单说成:
两直线平行,同位角相等.
下面大家来分组讨论(出示投影片A)
[生甲]利用两条直线平行,同位角相等可以证明:两条直线平行,内错角相等. [生乙]还可以证明:两条直线平行,同旁内角互补.
[师]很好.下面大家来想一想:(出示投影片B)
[生甲]根据上述命题的文字叙述,可以作出相关的图形.如图6-23.
[生乙]因为两条平行线被第三条直线所截,内错角相等这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图6-23,把这个文字命题改写为符号语言.即:
已知,如图6-23,直线a∥b,1和2是直线a、b被直线c截出的内错角.
求证:2.
[师]乙同学叙述得很好.(出示投影片C)
[生丙]要证明内错角2,从图中知道1与3是对顶角.所以3,由此可知:只需证明3即可.而2与3是同位角.这样可根据平行线的性质公理得证.
[师]丙同学的思路清楚.我们来根据他的思路书写证明过程.哪位同学上黑板来书写呢?
(学生举手,请一位同学来)
[生丁]证明:∵a∥b(已知)
2(两直线平行,同位角相等)
∵3(对顶角相等)
2(等量代换)
[师]同学们写得很好.通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可以把它作为今后证明的"依据.
注意:(1)在课本P191中曾指出:随堂练习和习题中用黑体字给出的结论也可以作为今后证明的依据.所以像对顶角相等就可以直接应用.
(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意. 接下来我们来做一做由判定公理可以证明的另一命题(出示投影片D)
[师]来请一位同学上黑板来给大家板演,其他同学写在练习本上.
图6-24
[生甲]已知,如图6-24,直线a∥b,1和2是直线a、b被直线c截出的同旁内角.
求证:2=180.
证明:∵a∥b(已知)
2(两直线平行,同位角相等)
∵3=180(1平角=180)
2=180(等量代换)
[生乙]老师,我写的已知、求证与甲同学的一样,但证明过程有一点不一样,他应用了直线平行的性质公理,我应用了直线平行的性质定理.(证明如下)
证明:∵a∥b(已知)
2(两直线平行,内错角相等)
∵3=180(1平角=180) 2=180(等量代换)
[师]同学们证得很好,都能学以致用.通过推理的过程得证这个命题两条平行线被
第三条直线所截,同旁内角互补是真命题.我们把它称为定理,即直线平行的性质定理,以后可以直接应用它来证明其他的结论.
到现在为止,我们通过推理得证了两个判定定理和两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.
[师生共析]好,我们来共同归纳一下(出示投影片E)
[师]接下来我们来做一练习,以进一步巩固证明的过程.
3.课堂练习
(一)练习(出示投影片F)
(二)已知,如图6-27,AB∥CD,D,求证:AD∥BC.
[过程]让学生在证明这个题时,可从多方面考虑,从而拓展了他们的思维,要证:AD∥BC,可根据平行线的五种判定方法,结合图形,可证同旁内角互补,内错角相等,同位角相等.
[结果]证法一:∵AB∥DC(已知
C=180(两直线平行,同旁内角互补)
∵D(已知)
C=180(等量代换)
AD∥BC(同旁内角互补,两直线平行)
八年级下学期数学教学工作计划 篇5
一、复习准备:
1. 讨论:我们要了解我校学生每月零花钱的情况, 应该怎样进行抽样.
2. 提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢?
3. 讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含的信息,用样本去估计总体)
指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.
二、讲授新课:
1、教学频率分布直方图的作法:
① 引例:确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 如果希望大部分居民的`日常生活不受影响,那么标
准a定为多少比较合理呢 ?为了了较为合理地确定出这个标准,需要做哪些工作?
② 讨论:如何采用抽样调查的方式,得到本市的居民月均用水量?
③ 给出100位居民的月均用水量表,讨论:如何分析数据?
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形
传递信息
④ 频率分布的概率:频率分布是指一个样本数据在各个小范围内所占比例的大小. 一般用频率分布直方图反映样本的频率分布.
⑤ 作频率分布直方图的步骤:
求极差(数据组中最大值与最小值的差距); 决定组距与组数(强调取整);将数据分组;列频率分布表(包括分组、频数累计、频数、频率);作频率分布直
方图(在频率分布表的基础上绘制,横坐标为样本数据尺寸,纵坐标为频率/组距.)
⑥ 例:作出教材P56页 居民月均用水量的频率分布直方图.
(师生共同按步骤完成)
⑦ 讨论:纵坐标为何取频率/组距? (用矩形面积表示频率)
结论:用矩形面积表示频率,总面积为1.
注:频率分布表列出的是在名个不同区间内取值的频率,直方图是用小长方形面积的大小来表示在各个区间内取值的频率.
2、分析对比频率分布直方图:
① 将组距确定为1,作出教材P56页 居民月均用水量的频率分布直方图.
② 讨论:谈谈两种组距下,你对图的印象? 同一个样本数据,绘制出来的分布图是唯一的吗?
(当取不同的组距,得到不同形状的图形,不同的图形给人的感觉也不同. )
③ 讨论: 频率分布图有没有保留我们收集的数据?根据月均用水量的频率分布直方图,你能得到一些怎样的结论?(集中范围、变化趋势、直观表明分
布特征、用样本推测总体)
④ 思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,你能对制定月用水量标准提出
建议吗? (3t)