推荐度:
教学反思
推荐度:
《琥珀》教学反思
推荐度:
教学反思
推荐度:
数学教学反思
推荐度:
相关推荐
身为一位优秀的教师,我们要在教学中快速成长,写教学反思可以很好的把我们的教学记录下来,如何把教学反思做到重点突出呢?下面是小编精心整理的因数倍数教学反思,希望能够帮助到大家。
我结束了公因数与公倍数的教学。在我看来内容不是很难,没什么高难逻辑思维在里面,根据学生已有的知识水平,对于列举法和筛选法应该都掌握的不错。但是翻看了学生的练习册,才知道,这只是我的一厢情愿。里面存在着各种问题:有的答案书写不完整,没有写出最关键的话;有的公因数与因数概念混淆,求一个数的因数也说成公因数;有的是公因数与公倍数找不全,有遗漏现象;只有一些学习好的同学可以完整的做对这些题目。
看来学习的过程确实不是一帆风顺的,“一分辛劳一分收获!”的确是这样,面对学生的答题情况,我及时调整了自己的教学思路,决定对如何求公因数、公倍数做一专项练习。首先我将各种错误情况例举出来,教学生们进行判断,找出其中的问题加以改正,接着与学生一起对不同情况进行了归纳,使学生在针对不同题型的时候可以用不同方法快速做出解答,而不是只知道简单机械的照本宣科。从这节课的学习情况看,大部分同学都掌握的不错。不仅改正了自己练习册上存在的很多错误,还教学生学会了如何去归纳总结已学知识。收效很大,很是高兴!
的确,数学学习做题是极为必要的,但是做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。我经常教育自己的学生:在多种解法中选取适合自己的解题方法,对于一些灵活的题目而言,应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。
《倍数和因数》这一章是人教版五年级下册的内容。由于这一单元概念较多,学生要掌握的知识较多,所以掌握起来较难。我上的这节复习课分以下四部分。
1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的,这样有一种水到渠成的感觉。
2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。
3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。
4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。
不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。
本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别。还要掌握2、5、3的倍数的特征。这一单元的内容与原来教材比较有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。从学生学习的情况来看,这一改变并没有对学生造成任何影响。
本单元的内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在教学过程中,本人就忽视了概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,所以教学效果也不怎么理想。要解决教学中出现的问题,经过反思,我认为要做好两点:
(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但本单元不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
我在教学时做到了以下几点:
(1)密切联系生活中的数学,帮助学生理解概念间的关系。
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系,
我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
(3)根据学生的实际情况,教学找一个数的因数的方法
虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
(4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。
譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,,如果学生的学号数是老师出示卡片的倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点。
成功之处:
1.构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2、3、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2.在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握。
不足之处:
个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明。
再教设计:
抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点。
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
一、 操作实践,举例内化,认识倍数和因数我创设有效的数学学习情境,数形结合,变抽象为直观。首先根据一道应用题,通过对学生队伍的理解让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
二、自主探究,意义建构,找倍数和因数整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
1、倍数和因数是一个比较抽象的知识。在教学中,陶老师让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义。在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,陶老师还设计了让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,让学生明白除法算式中也能找出倍数和因数。最后,陶老师出示了五个数,让学生从中找找,说说谁是谁的倍数,谁是谁的因数。这一设计既是对上面内容的提升,又引出了下面的内容。
2、一个数的因数和倍数的寻找,课本上是安排先教学倍数后教学因数的。陶老师在教学时,打破了教材的安排,首先教学找一个数的因数。我觉得这样做比较好,找因数的方法比较难一点点,它需要学生的逆向思维,所以陶老师一步一步的引导着学生,扶放结合地让学生去探索找一个数因数的方法,随后再去教学找一个数的倍数,学生就容易找准了。这样安排既承接了上面的内容,又为学生一个数的倍数提供了方法。
一、教学设想:
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。基于以上认识,为了调动学生学习的积极性,提高学生课堂活动的参与性,我给这节课设计了四个教学环节:
良好的开头是成功的一半。课前通过轻松、愉快的谈话引入,说明“一个人是好朋友”这样的关系不能成立,从而为说清楚“倍数”和“因数”这两个好朋友之间的关系打下基础,对感知倍数和因数相互依存的关系进行有效的渗透和拓展。其次引入数学中自然数和自然数之间也有相互依存的关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。
新课伊始,直接由哪两个数相乘得12引入,教学因数倍数的概念。因数和倍数是比较抽象的概念,不要让学生去探究,学生也不可能探究出来,这就需要教师教,教时要结合具体算式讲。教师讲完之后,要让学生结合其它的算式进行练习,给学生一个举一反三的机会。因此,我首先根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,对于特殊的“12是12的因数,12是12的倍数”教师引导概括:一个数是它本身的因数也是倍数。然后通过除法算式加深因数倍数的意义,让学生充分的说一说。这里老师引导“能说6是因数,12是倍数吗?通过对反例的辨析,充分感受倍数和因数是相互依存的,使学生的感受更加深刻。让学生明确:因数和倍数是相互的,是有所指的,是两个自然数之间的关系,不能单纯的说6是因数或12是倍数,应说6是12的因数,12是6的倍数。
(二)合作交流,探讨找一个数的因数的方法。
教材把倍数和因数的意义以及找一个数的倍数和因数合在一个课时教学的,课的容量大、内容多。怎样通过有效的课堂,真正使孩子理解倍数和因数的意义,并且能够有序、完整地找一个数的`因数和倍数,就成了本节课的教学重点。其中,有序完整的找一个数的因数,既是重点更是难点。教学中我结合得到的三道乘法算式,教师半扶半放的引导学生找出12的所有因数。有了找12的因数的例子为依托,正好可以为找一个数的因数提供了思维的平台,找一个数的倍数比较容易,放在后面可以少投入些时间。
”从学生的角度看问题是教学取得实效的关键“。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。应该说,找出24的几个因数并不难,难就难在找出24的所有因数。教学中,不是急切认定结果,也不是把方法简单地告诉学生,而是让学生独立探究,在作业纸上独立写出24的所有因数,教师则及时巡视并请学生将各种情况反馈。有用乘法找的,有用除法找的,有有序找的,也有无序找而有遗漏的。
教师引导学生对有序和无序找的作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。在学和议的环节,学生交流的过程应该是相互补充、相互接纳的过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆正方形的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。这部分教学,我给学生足够的时间,让他们认真地思考、充分地交流、相互评价。学生在这样的过程中亲历了方法探究的过程,自主构建了知识体系。
接着通过练习及时巩固找因数的方法。最后通过观察比较三个数的所有因数,发现一个数的因数的特征时,让学生先在小组里说一说,再用自己的语言总结,而找出因数的特征。从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。
1、这堂课的行走过程。学习了五堂同课异构的《倍数和因数》,一直想自己尝试一下这堂课的教学,无奈,四年级的孩子已经学过了,就放在三年级进行教学,预习自己先到一个班级熟悉一下,和六年级的孩子打习惯了交道,现在一下子走进三年级课堂,真的还有诸多的不习惯,一堂课下来,自己用一个“急”字贯穿课堂,说话方式有待调整,于是,再一次梳理教案,详细备好每一句话。第二次上课,请了三年级的数学老师听课,出现了一个“涩”点,就是:9是倍数,9是因数的判断,但是学生稍作点拨,还是能完全理解的,师生配合,还算顺利,另外有一些小节问题处理得还是不成熟。由于“卡”得不算太“涩”,所以,也没在意。第三次课题组正式上的时候,当出现“9是倍数,9是因数”的判断,学生竟齐声回答:这种说法是正确的。其实,出现这种情况并不是偶然的,现在,再一次理一理,发现,开始的谈话,借鉴了“三个人,有两个儿子,两个爸爸”没有用好它,反而给了学生一个错误的提示,而且“先入为主”,学生进行正迁移,从数学原理来看,没有真正处理好“数形结合”,处理因数个数与摆几种图形的关系,课堂显得思维含量不够,数学价值有些削弱,所以,教案我又作了一定的修改。
2、关于“体验教学”主题的思考。体验既是过程,又是结果。通过学生观察老师三种写因数的方法,谈谈自己的体会,在交流、碰撞中,深化自己的认识。通过自己找因数、倍数的体验加深对知识的理解。这是我教学的出发点,实施得怎样,还需要同行的指点。
《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的理解。从学生的反应和课堂气氛来看,教学效果还是不错的。
能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的学习中已有所接触,所以学生很容易学,用的时间也比较少。
对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。
本节课的重点是让学生掌握因数、倍数的概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:
一、加强对概念间相互关系的梳理,引导学生从本质上理解概念。
因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。
二,引导孩子在自主探究中学习新知
在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。
三、注意培养学生的抽象思维能力
教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。
开学后上第一节课年级组教研课,挺有压力的。毕竟放了这么久的假,感觉有点不习惯,好象字都写不稳一样。还好,上完课后感觉还可以。
因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“3×4=12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。
为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。
针对这节课,课后老师们就这堂课认真评析,真诚的说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。
这几点既是目标也是方向,相信我们在新的一学期,团结协作,勤奋务实,努力朝着目标前进。
教师在教学时做了如下一些努力:
(1)捕捉生活与数学之间的联系,帮助学生理解概念间的关系。数学课堂中学生对数学概念的理解和表达,离不开教师的培养,今天在教学前,教师让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。因为今天教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是教师利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
(2)改动呈现倍数和因数概念的方式。书上用12个小正方形摆长方形,然后自己用算式把摆法表示出来。由这些乘法算式引出倍数和因数的概念。列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,教师还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
由于这节是概念课,因此有不少东西是由老师告知的,但这并不意味着学生完全被动的接受。当学生认识了倍数之后,教师进行了设问:8是4的倍数,那反过来4和8是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到8是4的倍数,反过来4就是8的因数,接下来2和8的关系,学生也迎刃而解了。
本节课的内容是在学生已经学习了一定的整数知识(包括整数的知识、整数的四则运算及其应用)的基础上,进一步认识整数的性质。本单元所涉及的因数和倍数都是初等数论的基础知识。
成功之处:
1.理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
2.厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
2. 对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
再教设计:
1.根据课本的练习相应的进行补充。