推荐度:
相关推荐
作为一名到岗不久的老师,我们要有很强的课堂教学能力,通过教学反思可以快速积累我们的教学经验,那要怎么写好教学反思呢?以下是小编收集整理的数学分数乘法教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
本节课是一节复习课,回顾本单元的教学,我认为“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”是本单元的重点及难点。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到活动的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。
而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的"策略。具体的讲就是:通过简单的具体事例进行集体引导,再通过具体的探索要求帮助学生尝试着探索比较复杂的实例。
本节课教学的是分数乘分数,重点是巩固和理解分数乘法的意义,探索分数乘分数的计算方法。由于五年级学生已有了一定的自学能力,所以课前已经有学生知道分数乘分数的计算方法,但只是知其然而不知其所以然,所以这节课要让学生理解分数乘分数的计算方法。
在教学实践中我采用“数形结合”的数学方法,帮助学生达成以上的"两个数学目标。由于学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
1、先复习求一个整数的几分之几是多少,进一步使学生明白求一个数的几分之几是多少要用乘法,而且是用一个数乘几分之几,为后面顺利列算式求1/2的1/2及1/4的1/2作知识和方法的储备。
2、引导学生通过用算式表示图形,再用图形表示算式,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。在第一个情境中,先引导学生理解“第二次剪去剩余部分的1/2就是剪去1/2的1/2,第三次剪去剩余部分的1/2就是求1/4的1/2,结合线段图理解到1/2的1/2就是1/4,1/4的1/2就是1/8,列出算式就是1/2×1/2=1/4,1/4×1/2=1/8。在折一折中,以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后根据图形表示出算式的计算结果,这样做的目的是通过“以形论数”和“以数表形”的过程帮助学生巩固分数乘法的意义,体会分数乘分数的计算方法。
3、让学生运用数形结合的方法独立完成教材中的做一做,进一步达成以上目标,为总结分数乘分数的计算方法积累认知。整体教学的效果很好。
由“搅乱”引起的反思。
今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”,“是用分子相乘的积作分子,用分母相乘的积作分母”“理由是……”……
在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的知识讲出来,结果一下子把老师事先设计的思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的教学没了层次,讲课缺乏激情。
对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的"时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?
现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。
分数乘法应用题涉及到了单位“1”的判断,而单位“1”的正确判断与较复杂的分数乘法应用题的解答息息相关。学生在接触到两种结构分数应用题,很容易把单位“1”搞混淆,出错也是经常的事,在突破这个难点的问题上,我采用的方法是统一两种结构的分数应用题,教会学生找单位“1”,利用画线图和列数量关系的手段去解决问题,取得了不错的效果。下面具体谈谈是如何突破难点,有效的将两种结构的分数应用题统一起来的。
首先,“求一个数的几分之几是多少”这种结构往往比较简单,从学生的练习来看,学生掌握比较好,班上有大部分学生都能在没有教师的指导下完成,但少部分同学面对应用题这种形式,具有胆怯心理,所以我从分数乘分数的意义入手,在新课的复习引入的环节让全班学生完成相应的文字题,学生容易入境,然后放开手让学生以小组形式展开对应用题的探究,并让完成较好的学生说说自己是怎样想的,全班共同交流,共同得出单位“1”,以及分数所表示的是“倍数关系”,并且结合线段图的方式,引导这个分数所对应的量,通过比、画、找的方式让学生自主发现这种类型的应用题和分数乘分数所表达的意义一样,另配合相应的`练习,帮助学困生较好地掌握该类型。
其次,在解决“比一个数多(少)几分之几”这种结构问题时,我选择的方法是通过判断句子“比一个数多(少)几分之几”中多或少了谁的几分之几?这个句子从语文的角度来看,其实它是一个省略句,省略的正是多或少了“一个数”的几分之几,这里所指的“一个数”其实就是前面所提到的“一个数”,如果在这样一个短句中出些两个“一个数”就会重复啰嗦,通过这样的讲解,学生很容易找到单位“1”,从而这种结构和第一种结构很好地结合在一起,再通过画线段及列数量关系的方法,分析对应量及所求量的关系,学生比较轻松的掌握此种类型,从反馈的结果来看,学生在判断单位“1”不容易混淆,这种讲解的方法的效果比较好。
在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
首先我不仅注重了情境的导入,提高孩子们的参与热情。
开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
同上我还鼓励学生大胆的"质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。
第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;
第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!
1、每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先画线段图,后尝试解答,再合作研讨。教师在巡视检查的过程中,发现学生有两种解法:(1)120÷4×3(2)120×3/4。于是我请两位同学上台板演,并要求他们讲讲自己解题的想法。在此基础上引导学生分析比较两种解法的联系。同学们在合作探讨中清楚地认识了两种求法实际上都是求120克的3/4是多少克。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。
2、学生的兴趣是一种资源,是学习的动力。课始,师生就以仲秋节吃月饼这一话题的亲切谈话,营造了一种民主、和谐、宽松、自由的教学氛围,既为新知的`学习营造良好的氛围,也让学生在不知不觉间做好情感上的准备。例题的选择、练习的设计都和月饼紧密相关,学生在这生动而充满时代气息的情境中,经历了知识的探索交流、延伸拓展的过程,新颖的内容使学生自始至终保持浓厚的兴趣,也体现了课堂教学整体结构的美。
《分数与整数相乘》教学反思这节课,我教学的内容是:苏教版小学数学11册第二单元《分数乘法》的第一课时。设计意图:由生活中的问题情景引发计算需求,培养学生运用已有知识和经验迁移、类推、自主探索并解决实际问题的意识,体验探索学习的乐趣。根据这一思路我设计了4个教学环节:一情境导入,理解意义、二自主探究,明白算理、三巩固练习,形成技能、四课堂总结,延伸课外。本节课,我自己比较满意的地方有以下三点:
1、重视创设情境,理解意义。让学生从现实生活中学习数学。本课我创设了同学为迎接国庆节做绸花的实际情境,引导学生根据实际问题的数量关系,列出算式。求三个相同加数的和,可以用加法和乘法列式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/ 10×3的结果。
2、重视直观教学,让学生在操作实践中学习数学导入新课时,我主要采用,引导学生涂色表示3个3/10米,目的是让学生认识到求3个3/10可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的`意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
3、尝试计算。自主探究新知,理解算理。借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。
4、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。
存在不足:
1、涂色表示3个3/10米处,由于学生速度慢费时较多;在学生探究3/10×3的算理时的引导还不够简约有效,使本课有前松后紧之弊。
2、对学生约分的格式和规范方面的要求不够,不利于养成良好的计算习惯。教学真的是件憾事,细细反思起来,总有需要改进的东西。今后,我一定要注意这些小细节,争取把课上得更好。
在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/41/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/41/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是分子乘分子,分母乘分母的道理。满足了学生多样化的学习需求。
在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的 1/2,然后对其再对折第二次,用红色涂出斜线部分的1/2,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(14的比较多)。说明学生不能够充分理解两次做为单位1的量。两次折纸中有两个单位1,比如第一次的1份占整个图形的1/2,此时的单位1是1,但是网格部分却占斜线部分的1/2,此时的单位1是1/2,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位1。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。
其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作探究算法举例验证交流评价法则统整等一系列活动中经历分数乘分数计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由特殊(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出分数乘分数只要分子相乘,分母相乘的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的`基础上得到不同的发展,还是课堂教学中值得探索的一个问题。
把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。
不足之处:
1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。
2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。
在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
数量关系的理解,要紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结 合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。
分数乘法的应用,则要用画线段图的方式来帮助学生建立数量与分数之间的对应关系。 进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的"辅助的。图形和数量是数学学习的一对相互依附的对象。 要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位1,但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准, 让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解一个数的几分之几与一个数占另一个数的几分之几的不同。
4、加强单位化聚方法的复习,如? 时=( )分 吨=( )千克。
面对今年的班级,作业批改是个问题,一直来,我喜欢面批,特别是对学困生,我觉得面批他们的作业对他们会有更大的帮助,因为学困生形成的原因总体来说有以下几个。
首先是接受能力差,他们往往反应慢,比同龄同学慢半拍甚至更多;其次,学习不用心,注意力集中不了,总是分神,如果课堂上趣味性的东西多,他又会“跑出”课堂更加收不拢心;再则,确实由于他对学习提不起精神,就是对读书“感冒”,再怎么弄都是心神疲惫;最后,还有可能是教师本身的素质,不能让学生对学习感兴趣,从而导致学习每况愈下。当然,最后一种的原因对小学生来说,发生的比例不大,毕竟儿童还是单纯的。针对学困生多的现状,我觉得我有必要对每一个学生的作业进行面批,我想,近几年自己的数学教学效果还说得过去的原因可能要归结在这上面。
进入六年级了,开学至今已近一个月,分数乘法应用题的教学也已经结束。但这块内容让我上得头疼,心烦。在课堂上,我很明确得按照分数应用题的解答方法:找准标准量——找出关键句——写出对应分率——用对应量=标准量×对应分率来解答。可是学生就是找不准分率,特别是当“求一个数的几分之几是多少”和“求比一个数多或少几分之几的数是多少”同时出现时,他们就弄不明白分率究竟是多少。我也知道分数应用题是个难点,一方面整数过度到分数,受整数的影响,学生适应度不够;其次,分数乘法、分数除法的计算刚开始,学生对把分数计算的结果化成最简的把握还是难点,不易掌握。
一种似懂非懂的状态从他们的表情上马上可以读出。在高质量的教学任务的要求下,我觉得对知识的强化训练还是必须的",而且一定要到位,所以这块知识点我是在有限的时间里,题量不多,要求以质量为主,我边巡视边指导,然后学生做完我及时面批,这样的反复训练学生有了很大程度的提高。再则大纲也要求,分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。除了引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义上,我也有跨度地做分数乘、除法应用题的对比性练习,因为分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。而在教学时适当地进行对比训练,使学生在对比中求新、求异、求同、求实;这样学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。另外,在对学困生的辅导中,用直观的线段图进行分析,通过多变沟通联系,如补条件,补问题等的形式进行补充,这样也能提高学生解题的熟练程度。分数乘法应用题及分数除法应用题是这学期的难点,“温过而知新”,相信反复地进行有针对性的进行“磨练”,学生还是能进步的。
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的"时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
分数乘法教学是六年级下期的一个教学内容之一,其实整数乘法对于同学们来说,已经不是很陌生的问题了,所以,在传授分数乘法这一知识点时,让同学们做一做整数乘整数所表示的意义,然后。让同学们通过自习的方式对今天所学内容进行迁移。在交流时,我发现大部分学生基本上理解了分数乘法的"意义及与整数乘法的异同。可是还是发现了一些问题:
⑴每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
⑵分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
⑶在教学中要强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的内容是:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
⑷利用分数化单位,如:2/5时=()分1/5吨=()千克
分数的教学对于本册来说,既是一个重点,又是一个难点,要在实际的练习中加以理解和应用。
一、让学生在探索的过程中理解:
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的.计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
二、回顾学生所做作业,出现问题集中表现在以下几点:
1、分数乘法的计算中,学生的约分错误较高,尤其是有公因数13、17、19的,好多学生都不能发现。
2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,重视单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲,但是部分学困生对于一个数是另一个数的几分之几与一个数比另一个数多几分之几理解还是不透。
三、采取应对措施:
1、分数的约分进行强化训练。
2、复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。
问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。
在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的`把问题复杂化了。
本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:
分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。
分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。
分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则
从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。
在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
本单元的重点有两个,而且这两个重点是交织在一起的:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。
分析教学内容从数学应用的角度来备课,分数乘法这一单元学生只要能从具体的问题中判断两个数据之间存在的相乘关系即可,只是这个相乘的关系要有新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。教学时我重点关注以下几方面予以检测,从而把复杂问题简单化。
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。
⑶帮助学生理解一个数的几分之几与一个数占另一个数的几分之几的不同。
⑷利用分数进行单位互化,如:2/5时=( )分 1/5吨=( )千克
在本单元教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的.联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。涂一涂、算一算的重点放在涂上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
求一个数的几分之几是多少。在教学中我突出了类比迁移和数形结合的方法,将分数意义以图的形式呈现,做到以形论数,在通过对图的理解抽象出问题实质就是求一个数的几倍(几分之几)是多少,运用类比的方法得出求6的2倍是多少和求6的1/2是多少都用乘法,进而列出算式,完成以数表形,使学生理解求一个数的几分之几是多少用乘法的道理。
优点:在这样的教学方式下,大部分学生都能进行分数乘法的计算。