圆的面积教学反思
推荐度:
圆的面积教学反思
推荐度:
《圆的面积》教学反思
推荐度:
相关推荐
圆的面积教学反思(精选15篇)
身为一位优秀的教师,我们都希望有一流的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,那么问题来了,教学反思应该怎么写?以下是小编为大家整理的圆的面积教学反思,欢迎大家分享。
圆的面积教学反思1
“圆”是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都能得到发展,设计了以下几个环节:
一、让学生经历知识的形成过程,渗透转化的数学思想
本课开始,我就让学生通过涂圆比赛建立圆的面积概念,再让学生回忆所学过的平行四边形面积公式推导的过程,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了。但通过我用课件演示,让学生讨论并再现平行四边形面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。这个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的.思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
二、演示操作,加深理解圆面积的计算公式
在教学中,我先借助电脑课件生动直观地演示了圆“化曲为直”“化圆为方”的变化过程,验证了之前的猜想——圆确实可以转化成我们所学过的图形,也向学生渗透极限思想。接着再放手让学生应用转化的方法进行操作,把一个圆转化成一个近似的长方形,从中发现圆和拼成的长方形的联系,并根据长方形的面积公式推导出圆的面积的计算公式,在这过程中,不但使学生有效地理解和掌握圆的面积计算公式,而且也使他们获得了转化的数学思想方法,并培养了学生探索问题的能力。
三、练习设计体现了针对性,层次性和实践性
本节课的课堂练习即有对圆的面积计算公式的巩固性练习,也有运用圆的面积解决简单的实际问题的练习,还有综合运用圆的有关知识解决生活问题的练习。通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。
四、存在不足和改进的地方有:
1、留给学生操作、交流合作的时间和空间不够充分,学生对转化后长方形的长相当于圆的什么?这个知识点的突破还不够理想。
2、学生在口述推导圆的面积公式的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。
3、在教学中我还需大胆放手把主动权交给学生,在提出一个问题后给予学生的思考时间不过充足,过于着急。这是我在今后的的工作中应继续改进的地方。
圆的面积教学反思2
这节《圆的面积》,是义务教育课程标准实验教科书六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。 通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识的学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一、明确概念:
圆的面积是在圆的周长的基础上进行教学的,首先利用课件演示 马能吃到草的图 让学生直观感知圆的面积。并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二、以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算圆的"面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。 ()根据学生的回答,选取其中的一个平面图形:平行四边形,让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三、转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生拼并观察它像什么图形?让学生发表自己的意见,充分肯定学生的观察。引导学生闭上眼睛,如果分成 32 等份会怎么样? 64 等份呢? …… 让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就愈接近长方形,完成另一个重要数学思想 — 极限思想的渗透。
四、 公式推导
长方形 面积学生都会计算: s=ab 引导学生观察长方形的长和宽与圆有什么样的关系:发现 a =c/2 =πr b=r, 长方形的面积 = 圆的面积,从而推导出 S=πS=π×r×r =πr2 。 通过实验操作 , 经历公式的推导过程 , 不但使学生加深对公式的理解 , 而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神 , 学生在求知的过程中体会到数形结合的内在美 , 品尝到成功的喜悦。面积计算教学反思多边形面积教学反思圆的面积教学反思
圆的面积教学反思3
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力, 把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
1、教学中我鼓励学生大胆猜测圆的面积
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。
2、体现学生的"主体性:
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题 解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
3、渗透了学习评价:
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如??”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”??学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心.
4、不足之处:
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
圆的面积教学反思4
本节课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。
成功之处:
1、以数学思想为引领,探索圆的面积计算公式的推导。学生对于把圆的面积转化为已学过图形的"面积并不陌生,通过以前相关知识的学习,学生很自然想到利用转化思想把圆的面积转化为长方形、平行四边形的面积来推导计算圆的面积。在教学中,我首先通过出示学过的图形长方形、正方形、三角形、平行四边形、梯形,让学生回顾这些图形的面积计算,从而为教学圆的面积做好铺垫。
2、利用多媒体的优势,与学生的实际操作相结合,使学生不仅知道圆的面积推导过程,还在学习中再一次温习转化思想,掌握解决问题的策略。在教学中,通过学生的操作,与多媒体的动态演示,使学生清楚的发现圆的面积与近似长方形面积之间的关系:近似长方形的长相当于圆周长的一半,宽相当于圆的半径,由此推导出圆的面积是:S=πr2。
不足之处:
学生由于事先在课前已把课本中的附页圆等分剪下来,对于把圆的面积转化成长方形、平行四边形有了一定的思维限制,学生是不是只是单纯的操作,而忽略了思维的进一步深入,还有待研究。
再教设计:
尽量放手给予学生最大的思考时间和空间,让学生在思索、质疑中不断建构知识的来龙去脉,习题要精选,注意变化的形式。
圆的面积教学反思5
圆的面积是最基本的平面图形,圆的面积这一课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。
本课时的教学设计,我特别注 意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。
在这节课的教学中,一开课我从学生的"知识基础出发,让学生回忆一下以前学过的平面图形的面积计算公式的推导方法,并利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过切、割、拼的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究 “能不能把圆转化为以前学过的图形来计算本课时教学的重点是圆的面积计算公式的推导。
教学时,教师作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边行),我把各小组剪拼的图形逐一展示,引导学生通过观察发现”分的份数越多,拼成的图形就越接近于长方形“,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。
这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,数学来源于生活又服务于生活,能够应用所学知识解决生活实际问题这是学习数学的最终目的。在本节课中,无论是新课的导入,还是新知的巩固应用,我都十分注重从生活中收集素材,如:装饰老师家的一张旧圆桌要买的铝合金的长,玻璃桌面的大小,公园里的圆形喷水池的占地面积,怎样测量学校水井的占地面积等问题,都让学生真切地感受到数学就在我们身边,数学与生活是密切相关的,用所学知识解决生活中的实际问题是一件多么快乐的事情,从而树立学好数学的信心。
通过这节课的教学,我深深感受到在教学中,教师要摆正自己的位置,真正将自主探索权交给学生,为学生提供思考与探索的机会,使每一学生积极参与活动,真正有效地参与活动,才能确保课堂教学的落实。
圆的面积教学反思6
《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。而在之前的学习中,孩子们也经历了《圆的认识》和《圆的周长》的学习,掌握了圆的周长公式,为本课时的教学做好了铺垫。
根据这一课时的内容特点,我在设计课堂教学时,特意给学生安排了小组合作探讨和个人尝试推导解决问题的设计,让学生主动参与到学习中,促成学习与活动的相结合。基于对课程特点的认识,我在设计中把教学目标设计为:1、理解圆的面积的含义;理解和掌握圆的面积公式。2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。3、引导学生进一步体会“转化”的数学思想,初搅私饧匏枷耄惶逖榉⑾中轮兜目炖郑銮垦暮献鹘涣饕馐逗湍芰Γ嘌笆У男巳ぁ�
通过与学生的努力,快乐地结束了本课时的学习,在这个过程中,我有以下几点的体会:
一、学生为主体,老师要有好的引导。
在设计本课时的时候,考虑到知识的特点,主要培养学生通过原来的转化知识应用在新知识中,发展学生的概括能力,于是,我把课堂的主体交还给学生,让他们在课堂的一开始,就进入到数学的领域,通过给他们自主地猜想,形成问题,并趁机引导学生:如何解决这个问题呢?学生有了自己的猜想,于是,集中地精神更高。当在探索中遇到困难后,我及时给予集体的讨论并让他们在小组内互相帮助,最后达到共同解决的目的。可有一点让自己不太满意的地方,就是学生对新知识的理解不能及时到位,也可能对自己的信心不足,课堂中的问题反馈学生的积极性不足。在总结圆拼长方形的时候,有同学有这样的一个问题:“老师,我想把它拼成三角形或者梯形,可以吗?”由于备课考虑不太周全,对于这个问题,我一时没能回答出来,只能敷衍了过去。除此之外,学生在操作中剪开圆的时候,有些剪断了,在拼的时候就多费了时间。
不过,在整个过程中,我还是给了学生充分的时间和空间,也注意了自己的引导作用,学生在自己的动手操作中还是能体会其中的探索乐趣,学会了知识,发展了自己的能力。
二、课时练习设计的思考。
由于在课前有了充分的思考,所以在每一个环节中的练习都有了充分的准备,在导入——猜想——操作——推导——验证,再回到练习,让学生的认识从浅到深,从具体到抽象,符合他们的认识发展规律。针对这个规律,我把练习也设计成层层递进的形式,从巩固公式方法——生活现象——实际测量——拓展思考,逐步提升学生的知识能力,对有挑战性的题目,我加入题后的提示,让学生用自己的理解结合小组的`合作,解决问题的同时,发展了学生观察、分析和应用的能力。可能个别学生在学习上有一定的困难,我没能及时地兼顾到,导致在课后有几名学生对课时练习还没有完全掌握的现象。另外,由于课前没有完全设想好练习时间的安排,导致后面的题目没能及时顺利地完成。
三、操作时间的分配问题。
数学是思维的体操。当学生在思考、拼的过程中应多给学生一些时间,多一些思维的空间,这样的课才丰实。因在课件演示组拼的过程中动作太快,没及时说说剪拼的方法。导致学生在操作时出现了很大的问题,如全剪断了,拼出费时多等问题,这样也致使练习的时间就更少了。
对于本课时来说,学生的操作时本课时主要采用的教学手段,学生在这个过程中都能全程参与进去,但如果不注意合理分配时间的话,会给教学带来一定的影响,希望能给其他老师一个参考。
经过实践教学后,让我明白了数学课堂有时并不需要由老师一手包办,有些时候,可以选择适当的时机,把学习的主导权交还给学生,对让他们主动参与进课堂,享受探索学习的快乐。
圆的面积教学反思7
目标预设:
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程:
一、引导估计,初步感知。
1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?
2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽
↓↓↓
圆的面积=∏rr
=∏r2
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
三、应用公式,解决问题
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
四、巩固练习
1、练习十九1求课始出示的光盘的面积
2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?
五、这节课你有什么收获?你认为重点的
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
六、课堂作业
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
圆的面积是多少平方厘米?
反思:
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的"半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
圆的面积教学反思8
1、圆的面积是在圆的周长的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。
通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
2、渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:
新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
3、在教师的引导下,使学生通过自己主动的观察、思考、交流。
运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的`推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
圆的面积教学反思9
“圆的面积”在学生掌握面积的含义和矩形、正方形等平面图形的面积计算方法,理解圆并计算圆的周长的基础上进行教学。在本课程的教学设计中,我特别注重遵循学生的认知规律,关注学生从生活经验和已有知识中获取知识、学习数学和理解数学的思维过程。本节的教学主要突出以下几点:
首先,在学习新知识之前,引入新旧并渗透“变换”的思想,引导学生回忆以前探索矩形、平行四边形、三角形和梯形面积公式的推导方法,引导学生发现“转化”是探索数学知识的新途径,是解决数学问题的好方法,为探索圆的面积计算方法奠定了基础。
其次,大胆猜测,激发探索。
在强调圆面积的含义后,我让学生猜测圆面积可能与什么有关。当学生猜测圆的面积可能与圆的半径有关时,设计实验验证:画一个以正方形边长为半径的圆,用计算正方形的方法计算圆的面积,探索圆的面积大约是正方形的几倍。这一信息在旧教科书中不可用。学生的好奇心和求知欲得到充分调动,这些正是他们进一步开展探究活动的“根植”。
第三,手工切割和拼写,体验“学生猜测后,将歌曲变为直线,取出两张同样大小的准备好的光盘,将其中一张分成几个部分,然后拼成平行四边形或矩形。学生手工切割拼图后,选择2~3组进行观察比较,发现如果一个圆被均匀地分成更多的部分,那么图形越接近图形的平行四边形或矩形。然后比较圆与图形之间的关系。比较切割后,拼图形状与原始图形、与圆相关的部分和组合图形用彩笔进行标记,形成清晰的对比,为以后推导面积计算公式打下了充分的基础。
四、演示操作,感受知识的构成
通过观察、比较和分析,找出圆的面积、周长和半径与组装的近似矩形的面积、长度和宽度之间的关系,并让学生推导出圆的面积计算公式。这样,从帮助到投入,从现象到本质,学生将始终参与如何将圆转化为矩形和平行四边形的探索活动,从而感受知识的构成。
v.分层实践与经验应用价值
结合教材中的实例,设计了三个层次的基本实践、改进实践和综合实践,从三个不同层次测试学生的学习情况。首先,基础练习巩固计算公式的应用,强调标准化的写作格式。第二,改进练习,收集身边的`实际数据,使本课所学数据与生活联系起来,灵活运用。第三,综合练习不仅要把以前学过的知识(给定圆的周长,先求半径,再求圆的面积)联系起来,还要锻炼学生的综合应用能力。在每个练习题的设置上,他们有不同的目的,并注意每个练习的指导重点。
但是,该课程的新课时间太长,实践不足,需要在今后的教学中加以注意。
圆的面积教学反思10
提问:请大家想一想,我们在推导平行四边形面积计算公式时,用的是什么办法?(割补法)(多媒体动态演示)
(边演示边讲解:沿着平行四边形的高剪开,将剪开的三角形移至右边补上,拼成一长方形,根据原来平行四边形与拼成的长方形之间的关系推导出平行四边形面积公式)。
导入:把所学图形进行分割、拼摆转化成学过的图形,然后根据学过图形的面积计算公式推导出新图形的面积公式,今天我们也按这种思路来推导圆的面积计算公式。
割补图形(四人小组):
1.将圆4等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
2.将圆8等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
3.将圆16等分,然后拼插起来,观察拼接成的图形的"边的形状是怎样的?
4.将圆32等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
检查操作结果(多媒体演示):
把圆平均分成4等分,拼成的图形很不规则。
把圆平均分成8等分,拼成的图形近似于平行四边形,边的形状显波浪形。
把圆平均分成16等分,拼成的图形更近似于平行四边形,边的形状较直。
把圆平均分成32等分,拼成的图形非常近似于平行四边形,边的形状更直。
请同学们闭上眼睛想一想:如果我们继续将圆等分成64份,128份,……结果会怎样呢?(对,如果把圆面等分的份数越多,那么拼成的图形会越接近于长方形)
(请睁开眼睛看屏幕,多媒体演示64等分)
推导公式:
刚才我们把圆转化成了长方形,那么如何根据长方形的面积推导出圆的面积公式呢?
我们以把圆16等份,拼成长方形为例来推导(同桌讨论)
拼成的近似长方形的宽相当于圆的什么(半径)
拼成的近似长方形的长相当于圆的什么?(周长一半,c/2=2πr/2=πr)
圆转化成长方形时,尽管图形发生了变化,但什么没变?
因为圆的面积和长方形面积相等,
所以长方形的面积=长×宽
圆的面积=πr×r
=πr·r
学生复述、多媒体演示,集体复述:
近似长方形的长相当于圆的周长的一半(闪动),
近似长方形的宽等于圆的半径(闪动)
长方形的面积=长×宽
所以圆的面积=πr×r
(r×r可以写作r的平方,表示两个r相乘)
用字母表示:S=πr·r
教后反思:学生的学习能力不是靠传授形成的,而是在教学活动中,靠学生自己去“悟”、去“做”、去“经历”、去“体验”的。圆面积计算公式的推导是教学的一个难点。本节课通过直观演示和学生动手操作等方法,充分运用多媒体课件辅助教学,给学生以生动、形象、直观的认识,通过学生多次不同的剪拼,采用转化、想象等,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳出圆的面积计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。这个环节,让学生充分经历了操作、观察、想象、推理、反思等数学活动与数学思考过程,明确了圆的面积与半径之间的关系。充分的探究活动,既培养了学生的空间想象能力,也培养了学生的合情推理能力,有效促进了学生思维能力的发展。<
圆的面积教学反思11
《圆的面积》是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次挑战。根据“135”的指导,我设计并完成了这一课时的教学任务,现将课后反思总结如下:
1、从教学设计上,我紧紧把握“135”,让学生成为课堂中学习的主人,精心设计“前置性小研究”,使学生通过课前自己的操作研究,课上在小组内的交流,再在班内展讲互动,通过学生“自学—助学—群学”的方式,使学生初步归纳出结论:把圆平均分成的份数越来越多,拼成的图形越来越接近长方形。整个这些环节,教师只是作为学生探究的引导者,课上完全让学生在教师的引导下自主的进行交流、探讨、互动,经历知识的形成过程,使学生真正达到了自己学习数学知识的目的。
2、从教学过程中,学生开始的`探讨气氛并不活跃,但通过学生的互相指正、教师的适时评价,学生能充分的发表自己的见解,而且说得有理有据。这样,学生不但听得认真,讲的认真,而且也真正的融入到了课堂的学习之中,使学生的学习能力,解决问题的能力都得到了发展。
3、从教师本身来说,教师看着是在课堂上的活动少了,但是要求教师课下准备的内容多了,要精心设计“前置性小研究”,使“前置性小研究”的内容真正的为本节课的学习服务,不走形式;还要让“前置性小研究”的内容更加贴近学生实际情况,让大约70﹪的学生都能自己独立完成,然后把自己的疑问再在小组内通过交流解决,最终能在班内互动交流时解决。
4、在“135”下尝试的教学模式,小组分工是我们进行有效课堂学习的必要前提,学生探究的积极性是整堂课成功的关键。课前我就充分考虑各组的各个学生的实际情况,做到心中有数,在课上小组交流时对个别组的个别同学(王晨、宋超、赵家辉)进行引导、鼓励,使他们能认真倾听别人的说法,敢于发表自己的想法,从而使全体学生一同积极起来。
5、当然,在课堂探究中,教师总担心学生说的不全面,不能准确把握知识点,也怕课上的时间不够,所以,教师总结的话比较多,有时会打断学生的发言,致使学生对自己的想法发表的不全面。在这些方面也要充分相信学生,给学生自我总结、提升的空间,让学生自己说,教师适时加以引导即可,这样,久而久之,学生的学习方法得到了锻炼,学习能力得到了提高,才能使学生真正的在“生本课堂”上得到发展。
圆的面积教学反思12
1、运用转化思想,解决数学问题。在教学过程中,我首先借助估算了解圆的面积的意义,再让学生利用学具进行操作,自主发现圆的面积与拼成的平行四边形的面积的关系,推导出圆的面积计算公式,降低了学习的难度;同时在教学中将“化曲为直”(即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的方法,激发学生的求知欲望)和转化的数学思想渗透到学生思维中,让学生注重知识的发现和探究的过程。
2、注重联系生活实际,开展探究性的数学活动。学生从认识直线图形发展到认识曲线图形是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已经具有了一定的逻辑思维能力,已经有了许多机会接触到数与计算、图形与几何等较为丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,因此在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识的.发现和探究过程,让学生从中获得学习数学的积极情感体验和感受数学的价值。
3、练习设计有坡度,由浅入深地巩固新知。教师在指导课堂练习时,先是让学生解决马儿的困惑,也就是知道半径求圆的面积,然后是知道直径求圆的面积,在拓展提高中告诉圆的周长,解决与圆面积有关的问题。练习安排坡度适当、由易到难,使学生由浅入深地掌握了知识,形成了技能。同时还培养了学生的逻辑思维和推理能力。
4、重视图示的作用。结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
圆的面积教学反思13
圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算
学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环 的本质问题。
根据以前的经验,也总是通过实例 ,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,.概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环, 通过观察或量一量圆 环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆,第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操 作也有课件濱示,还有练习, 非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴
趣。 也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的`面积,自然而然,学生肯定也明白了怎样求圆环的面积.
学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、 “环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。
通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展.
圆的面积教学反思14
《圆的面积》这一节课是很重要的一节课。它不仅要向学生渗透曲线图形与直线图形的关系,运用化曲为直的数学思想导出圆的面积的计算公式,而且为以后的圆柱、圆锥等知识的学习打下了基础。本节课,我认为我有2个亮点:
一、导课激趣,揭示了概念:
在课的开始,我出示了一个教学情景:一只羊被一条5米的绳子拴在草地上的木桩上,它能吃到多少平方米的草呢?学生们经过了一番思索一致认为以5米为半径,以木桩为圆心,画一个圆,圆上的草就是羊所能吃到的草,随着学生的指引,我在黑板上板画,聪明的学生马上就意识到了“求出了圆的"面积,就是羊能吃到多少平方米的草。”我指着黑板上草坪上的圆,让学生理解:“什么是圆的面积?”从而引导出:圆的面积就是它所占平面的大小。
二、巧妙衔接,推导公式:
在活动操作之前,我先领学生回顾,平行四边形公式的推导方法。然后铺垫猜想:圆可以转化成我们学过的什么图形来计算呢?接下来,学生们带着猜想,运用书中附页上提供的学具自主探究。一堂课,时间毕竟有限,要在有限的时间内完成这项活动。我事先做了充分地考虑:四人一组,细化了每个小组人员的分工:一人剪16等分的圆,另一个人整理剪好的部分;一人剪32等份的圆,另一个随后整理,全剪完,四人集智慧,分别拼,看都能拼出什么图形来。这样分工既节省时间,又能提高课堂效率,还充分地发挥了团队小组合作的力量。
学生拼完图形,由于学具纸很薄,等份的份数不够,学生在剪裁时存在着一定的误差,剪得不均匀,致使拼完的图形十分不规范,于是,我灵机一动,让学生用格尺,用笔沿着拼好的图形拓一下,这样就缓解了图形不规范所造成公式推导的障碍。学生探究后,再用教具演示公式推导的过程,让学生加深理解这一过程。就这样,我们巧妙衔接,推导了公式。顺利而高效地完成了探究活动。
圆的面积教学反思15
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我异常注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
一、以旧引新,渗透“转化”思想
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的"面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、动手剪拼,体验“化曲为直”
学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越
接近图形平行四边形或长方形。再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
四、演示操作,感受知识的构成
经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的构成。
五、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。