快好知 kuaihz

乘法分配律教学设计

《乘法分配律教学设计

推荐度:

相关推荐

乘法分配律教学设计

在教学工作者实际的教学活动中,往往需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。那么教学设计应该怎么写才合适呢?以下是小编为大家整理的乘法分配律教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

乘法分配律教学设计1

教学内容分析:

乘法分配律是北师大版小学数学四年级上册第三单元p48~p49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

教学目标:

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

过程与方法:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

1、在这些学习活动中,使学生感受到他们的身边处处有数学。

2、增加学生之间的了解、同时体会到小伙伴合作的重要。

3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学过程:

一、创设情境,激趣导入。

1、出示:

125×8=25×9×4=18×25×4=

125×16=75+25=89×100=

教师请个别学生口算并说出部分题的口算依据及应用的定律。

2、再出示:119×56+119×44=

师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

二、引导探究,发现规律。

1、出示课本插图

师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

生:我看到两个工人叔叔在贴瓷砖。

生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

师:你真细心。大家能根据获得的信息提一个数学问题吗?

学生提问题,教师出示问题:一共贴了多少块瓷砖?

2、估计

师:谁能估计工人叔叔大约贴了多少块瓷砖?

学生试着估计。

3、列式解答

师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

学生用自己喜欢的方法计算,教师巡视。

师:谁来向大家介绍一下自己的算法?

生:6×9+4×9(板书)

=54+36

=90(块)

师:这边的6×9和4×9分别是算什么?

生:分别算出正面和侧面贴的块数。

师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

生:我是这样列的,(6+4)×9(板书)

=10×9

=90(块)

师:你能说说为什么这样列式吗?

生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

生:计算方法不一样,结果却是一样的。

师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

生:等于号。

教师板书。

4、观察算式的`特点

师:观察等号两边的式子,它们有什么特点呢?

生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边的算式是这两个加数分别与一个数相乘,再把所得的积相加。

生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

师:是这样吗?你们能再举一些类似的例子吗?

5、举例验证

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

63×64+63×36和63×(64+36)

讨论交流:

(1)交流学生的举例是否符合要求:

(2)交流不同算式的共同特点;

(3)还有什么发现?(简便计算)

师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律

6、字母表示。

师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

7、揭示课题。

三、应用规律,解决问题。

课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

1、(80+4)×25

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3)鼓励学生独自计算。

2、34×72+34×28

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求。

(3)简便计算过程,并得出结果。

3、让生观察:36×3

=30×3+6×3

=90+18

=108

师:你能说说这样计算的道理吗?

生独自思考,小组讨论,全班交流。

四、总结。

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

乘法分配律教学设计2

教学内容:苏教版四年级(下)运算律——乘法分配律

教学目标:

1、让学生经历乘法分配律的探索过程,理解并掌握乘法分配律

2、初步了解乘法分配律的应用。

3、在学习活动中培养学生的探索意识和抽象概括能力。

教学重点:在解决实际问题的过程中,理解并掌握乘法分配律的意义。

教学难点:正确表述乘法分配律,并能理解运用乘法分配律进行简便计算的理由。

教学过程:

一、比赛激趣,引入新课。

(1)、同学们,学习新课前,我们先来一个小小的数学热身赛,看谁算的又对又快。

7×4×25 125×9×8 48+315+52 888+17+83 125×8

(2)、评出胜负,分析原因。

(3)、小结:运用乘法结合律和乘法交换律可以使计算简便,今天我们继续探索乘法的另一定律《乘法分配律》(板书课题)

二、初步感知乘法分配律

1、解决以下实际问题。

问题一:育新学校马上要举行艺术节比赛了,老师准备给他们每人买一套服装,我们一起去看看好吗(课件出示例题情景图)

短袖衫32元/件裤子45元/件夹克衫65元/件

(1)提问:要买5件夹克衫和5条裤子,一共要付多少元呢你能解决这样的问题吗请同学们在自己的本子上列出综合算式,再算一算。

(2)学生动手,独立算出要付的钱数。

(3)教师巡视,让用65×5+45×5和(65+45)×5两种不同方法解答的学生分别口答。并说明解题思路。

板书:(65+45)×5     65×5+45×5

问题二:一块长方形的菜地长64米,宽26米,求周长。

(1)学生动手,独立算出周长。

(2)教师巡视,让用64×2+26×2和(64+26)×2两种不同方法解答的学生分别口答。并说明解题思路。

板书:64×2+26×2 (64+26)×2

三、探索规律。

1、板书:(65+45)×5=65×5+45×5

(64+26)×2=64×2+26×2

2、体验感悟

(1)、谈话:请同学们观察这两个等式,你发现它们有什么共同的特点吗

(2)在学生回答的基础上,教师根据情况相机引导:等号左边先算什么,再算什么右边呢

3、类比展开。

提问:你能根据刚发现的特点编几组等式吗

学生编写,教师巡视后全班交流。

4、揭示规律。

(1)用语言表述:两个数的和与另一个数相乘,等于这两个数分别与另一个数相乘再相加;

如果有学生答得比较到位:把他的话再重复一遍的。

(2)谈话:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢(3个)

我们就用a、b、c这三个字母来表示

(3)引导:如果在第一个等号的左边我用a来表示65,b来表示45,c来表示5就可以写成这样的形式:

板书:(a+b)×c

(4)追问:那么等号的.右边应该怎么来表示呢

学生独立完成。

学生口答后板书:(a+b)×c=a×c+b×c

四、应用规律。

练习课本56页第一,二习题

五、拓展延伸。

1、看看前面买服装的问题,根据提供的信息,除了可以求一共要付多少元之外,还可以提出什么数学问题

(1)出示:5件夹克衫比5条裤子贵多少元

怎样列式还可以怎样列式出示:60×5-50×5 (60-50)×5

(2)思考:这两道算式等不等呢你怎么知道相等的

这个等式和我们发现的乘法分配律的形式一样吗哪儿不一样

(3)如果老师是这样买的,

出示:买5件夹克衫、5条裤子和5件短袖衫,一共要付多少元怎样列式还可以怎样列式出示:

60×5+50×5+30×5 (60+50+30)×5

(4)这两道算式等不等呢

这个等式和我们发现的乘法分配律的形式一样吗

2小结:乘法分配律不仅适用于两个加数相加,还适用于两个数相减,甚至是多个数相加或相减。同学们掌握了这些知识后相信在今后的计算中会更加简便快捷。

六、全课小结

你今天这节课学到了什么

请大家想一想,我们是怎样发现乘法分配律的呢

今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教学设计3

教学目标:

1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律教学设计

2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

3、能够运用乘法的分配律进行简便计算。

重点、难点:

重点:学生参与推导乘法分配律的过程。

难点:乘法分配律的推理及运用。

教学过程:

一、比赛激趣,提出猜想.

(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做a组的题,右边的两组做b组的题,看谁做的又对又快,开始)

9×( 37+63) 9×37 + 9×63

(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?

教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

引导学生发现:这两个算式的"运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×( 37+63) =9×37 + 9×63

(3)将学生的发现以他(她)的名字命名为“xx猜想”。

设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?

(1)全班同学独立完成。

(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

还有不一样的方法吗?谁来说说看?(生回答,师板书)

算式(28+22)×3 和28×3+22×3的每一步各表示什么?谁能说给大家听听?

(3)观察这两个算式,你有什么发现?

引导学生比较两个算式异同点,并指名学生说一说自己

生:这两个算式的得数是一样的。

师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

生:等于号

师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以( 35+25)×3=35× 3+25×3

师:再和前面的一组式子一起观察,

9×( 37+63)=9×37 + 9×63

(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

2、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

(2)学生回报:谁来说一说自己举的例子。

(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

(4)轻声读这些等式,你发现了什么?

3、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

学生回报。

(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

结合学生回答,教师板书:(a+b)×c=a×c+b×c

齐声读两遍。

(4)对于乘法分配律,用字母来表示,感觉怎样。

引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。

三、加强应用、深化理解

1、瞻前顾后填一填。

(10+7)×6=□×6 + □× 6

8×(125+9)=8×□+ 8×□

7×48+7×52=□×(□ + □)

2、火眼金睛看一看:

判断下面算式是否正确?并说明理由?

56×(19+28)= 56×19+28 ( )

32×(7×3)= 32×7+32×3 ( )

25×12+12×75 = 12×(25+75) ( )

25×99+25 =(99+1)×25 ( )

3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28

师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

4、找朋友

(10+6)×4 10 ×4+6 10 ×4+ 6 × 4

5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9

3 ×25+7 ×25 3+7×25 (3+7)×25

5、对口令

师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

6、脑筋急转弯。

猜一猜,等号后边是三个什么字?

木×(1+3+2)=?

四、总结:

1、回忆一下,这节课你学会了什么?

2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。

乘法分配律教学设计4

【教学内容】

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

【教材简析】

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

【教学目标】

1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

【教学重点】

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

【教学难点】

清楚地表述自己发现的规律,理解及应用乘法分配律

【教学过程】

一、创设情境,感知规律

1.提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2.结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

三、讨论交流,验证规律

1.举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

……

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2.观察几组等式的相同点。

教师引导学生观察这几组等式的.左边和右边分别有什么相同点。

预设回答:①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3.总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律

教师出示乘法分配律

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

四、巩固拓展,应用规律

1.连一连。

2.在□里填上合适的数或字母。

3.火眼金睛辨对错。

乘法分配律教学设计5

《探索与发现(三)乘法分配律》教学反思

东新四小学 王唯

教学内容:

小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

教学目标:

1、经历探索的过程,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

教学重点:理解乘法分配律的特点。

教学难点:乘法分配律的正确应用。

教学过程:

一、复习回顾

(出示课件1)计算

35×2×5=35×(2×)

(60×25)×4=65×(×4)

(125×5)×8=(125×)×5

(3×4)×5 × 6=(×)×(×)

师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

二、探究发现

(出现课件2)

师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

生:我发现有两个叔叔在贴瓷砖

生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

师:你最想知道什么问题?

生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

生:我估计大约有100块瓷砖

生:我估计大约有90块瓷砖。

师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

师:谁来向大家介绍一下自己的做法?

生:6×9+4×9(板书)

=54+36

=90

分别算出正面和侧面贴的块数,再相加,就是贴的总块数。

生:(6+4)×9(板书)

= 10×9

=90(块)

因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

生:我发现计算方法不同,但结果却是一样的。

6×9+4×9 = (6+4)×9(板书)

师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

(学生举例,教师板书)

师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)

小组1:符合要求,因为每组中两个算式都是相等的。

小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

(板书用=连接算式)

师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的.关于乘法的第三个定律。

师:大家齐读一遍。

师:和同桌说一说自己对乘法分配律的理解。

师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

(a+b)×c=a×c+b×c

师:这叫做乘法分配律

三、巩固练习:

1、计算

(80+4)×25 34×72+34×28

师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

2、判断正误

( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

35×9 + 35

= 35×( 9 + 1 )

= 350 - - - - ( )

3、填一填

(12+40)×3=× 3 +×3

15×(40 + 8) = 15×+ 15×

78×20+22×20=(+ )×20

四、总结

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

[板书设计]

探索与发现(三)

-----乘法分配律

(a+b)×c=a×c+b×c

6×9+4×9 =(6+4)×9

(40+4)×25 = 40×25+4×25

(64+36)×42 = 42×64+42×36

乘法分配律教学设计6

设计思路:

本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。

一、教学内容

义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。

二、教材内容分析:

《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要

三、学生情况分析:

今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。

四、教学目标

针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标.

知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。

过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。

情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。

五、教学重点、难点

重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。

难点:难点是理解乘法分配律的意义及应用。

六、教学准备:交互式多媒体、课件ppt.(以下均为做课课件)

七、教法、学法:

(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。

(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。

本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。

八:教学过程:

(一)、谈话导入、激发兴趣。(课件出示图片ppt4)

1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)

设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢

使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义

(二)、创设生活情境,引入新课。

谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。

(课件出示主题图)(课件出示图片ppt5)

3.提问:(出示ppt6)

(1)你从图中获得了哪些信息

(2)今天我们要解决的问题是什么

预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”

设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。

(三)、自主探索、合作交流。(课件出示ppt7)

一)初步感知

1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的

2.学生解答后汇报。

追问:还有不同的想法吗

板书:(4+2)×25 4×25+2×25

3.组织交流

(1)说说每道算式的意思

预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。

(2)比较最后的计算结果。(相同)

追问:可用等号连接吗写成一个算式。

板书:(4+2)×25 = 4×25+2×25

读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律

观察,这道等式左边和右边有什么相同的地方和不同的地方

请跟你的`同桌说说。全班汇报。

相同的地方:结果相同,每个算式都有3个数。

不同的地方:运算顺序不同。

设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性

(二)、猜想验证。(课件出示ppt9)

1.小组内写一写,算一算,举出这样的例子。

2.汇报交流。

3.引导学生总结概括。(提示:等式左右两边是怎样计算的)

预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;

而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。

(三)、同类推广,总结归纳。(出示ppt10、11)

1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。

2.你是怎样验证的。

3.同桌互相验证。

4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)

5.揭示课题(小结:出示ppt12)

我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。

6.统一用字母表示:(课件出示ppt13)

如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗

(a+b) ×c=a×c+b×c

总结规律:

(a+b) ×c=a×c+b×c

a×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。

设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。

1、既然左边=右边,那右边等于左边,谁来读一读。

2、从右往左看,这个式子有什么特征

3、乘法分配律可以从左边用到右边,也可以从右边用到左边。

设计意图:让学生明白:乘法分配律左右两边可以相互逆用。

(四)、巩固应用,拓展延伸。(出示课件ppt16)

1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。

56×(19+28)=56×19+28 ( )

32×(7×3)=32×7+32×3 ( )

64×64+36×64=(64+36)×64 ( )

问题:说一说你的判断理由。

2.下面哪些算式运用了乘法分配律(出示课件ppt17)

117×3+117×7=117×(3+7) ( )

4×a+a×5=(4+5)×a ( )

24×(5+12)=24×17 ( )

36×(4×6)=36×6×4 ( )

3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)

4.观察下面的竖式,说一说在计算的过程中运用了

什么运算定律。出示课件ppt19

25×12=25×2+25×10

5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)

103×12 20×55

6、回顾、拓展

1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗

学生回答,师板书。(在原有算式上添上减号即可)

(4-2)×25 = 4×25-2×25

2、说说算式所表达的意思。

3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c

[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]

(五)、课堂小结

这节课你学会了什么请说一说。

板书设计乘法分配律

(4+2)×25 = 4×25+2×25

(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c

两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。

教学反思

乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

乘法分配律教学设计7

学情分析:

乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

教学目标:

1.理解并掌握乘法分配律并会用字母表示。

2.能够运用乘法分配律进行简便计算。

3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

教学重点:

理解并掌握乘法分配律

教学难点:

乘法分配律的推理及运用。

教学过程:

一、情景激趣,提出猜想

1.情景

暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

①整理条件、问题

从这段资料中你知道了那些信息?王老师遇到了哪些问题?

②学生列式,抽生回答: (18+23)×8, 18×8+23×8

③交流算式的意义

第一个算式先算什么?再算什么?第二个算式呢?

④计算:(发现两个算式结果相等)

⑤观察、分析算式特点

咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

⑥全班交流,引导学生从下面几个方面进行思考

A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

C.计算结果:结果相等。

(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

2.提出猜想

真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

怎样才能知道像这样的算式都有这样的规律?

引导学生想到用举例的方法进行验证。

师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的.能力,这才是真正的立足于学生一生的发展而在教学。)

二、举例验证,证明合理性

1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

2.分组举例

两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

3.交流:谁愿意把你举的例子和大家一起分享?

A.这个式子符合要求吗?

B.这些式子都有一个共同的规律,这个共同的规律是什么?

教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

三、概括归纳,建立模型

1.个性概括

这样的式子你们还能写吗?能写完吗?

强调这样的例子还有很多很多,是写不完的。

你能用一个式子将所有的像这样的式子都概括出来吗?

学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

2.统一认识

教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

(a+b)×c=a×c+b×c

给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律

3.进一步认识

这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

齐读式子。

(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

四、巩固应用,深化认识

1.哪些算式与72×35相等

72×30+72×5

72×35 72×30+5

70×35+2×35

70×35+2

问:为什么相等?

(设计意图:让学生理解乘法分配律的本质意义)

2.你会填吗?

(10+7)×6= ×6+ ×6

8×(125+9)=8× +8×

7×48+7×52= ×( + )

问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

(设计意图:学生进一步深刻理解乘法分配律

3. 7×48+7×52 7×(48+52)

这两个式子你想选择哪个进行计算?为什么?

如果只给你第一个式子,你会想办法让你的计算变得简便吗?

小结:利用乘法分配律有时候可以使计算变得更简便。

(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

<<<1234>>>

4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

①34×72+34×28(订正时问:为什么不直接算)

(80+4)×25

订正时问:把(80+4)×25写成80×25+4×25依据是什么?

如果不用好不好算?

(80+20)×25

问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

教师小结:在计算中要根据数据特点,灵活运用乘法分配律

②21×25 75×99+75

小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

五、全课小结

孩子们,你们今天收获了什么?

当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

板书设计

乘法分配律

(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

=41×8 … … … …

=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

18×8+23×8 … … … … (80+20)×25

=144+184 个性概括:… …

=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

乘法分配律教学设计8

《乘法分配律的运用》教学设计及反思

教学目标

(一)使学生学会用乘法分配律进行简算,提高计算能力.

(二)培养学生灵活运用乘法运算定律进行计算的习惯.

教学重点和难点

能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计

(一)复习准备

1.口算:

(二)学习新课

我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

1.创设情境,激发学生学习积极性.

出示102×( ).

请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

2.教学例6:用简便方法计算.

(1)计算102×43.

这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一

做,对比一下,找出哪种方法简便.

在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

(2)计算102×24.

订正时说明怎样简算的?根据是什么.

(3)计算9×37+9×63.

启发提问:

①这类题目的结构形式是怎样的?有什么特点?

②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

在学生充分讨论的.基础上,师板书:

提问:这题能简算吗?什么地方错了?应怎样改?

启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

2.根据乘法分配律把相等的式子用“=”连接起来.

讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

在讨论基础上得出:

第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此

要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

(四)作业

练习十四第5~10题.

教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。

乘法分配律教学设计9

教材分析

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。

教学目标

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的`能力。

3、会用乘法分配律进行一些简便计算

重点难点

1、 指导探索乘法分配律

2、 发现并归纳乘法分配律

方法指导

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律

预设流程

激趣导入

(约3分钟)

一、创设情境,提出问题:

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

精讲点拨

(约8分钟)

(二)、观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

师:用字母如何表示乘法分配律

测评总结(约12分钟)

三、巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)×3=()×3+()×3

15×(40+8)=15×()+15×()

78×20+22×20=( + )×20

66×28+66×32+66×40=( + + ) ×40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56×(19+28)=56×19+56×28

(18+15)×26=18×15+26×15

(11×25) ×4= 11×4+25×4

(45-5)×14 =45 ×14 -5 ×14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25 39×8+39×6-4×39

4、拓展提高

你能用乘法分配律解决这道题吗?

86×101

四、说一说,今天我们研究了什么?你有什么收获

板书设计

乘法分配律

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

乘法分配律教学设计10

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

教学目标

1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律

2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。

教学过程

一、创设比赛场景,在活动中激趣

谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?

A组B组

(1)135×6+65×6(1)(135+65)×6

(2)9×37+9×13(2)9×(37+13)

在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

A组B组

(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)

小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的.兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

二、创设活动情境,在合作中探究

1.交流算法,初步感知

(课件出示例题情境图)

谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

(1)学生的选择方法1:买5件夹克衫和5条裤子

一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

学生在自己的本子上写,教师巡视。

[教师板书:(65+45)×5=65×5+45×5],让学生读一读。

(2)学生的选择方法2:买5件短袖衫和5条裤子

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

[教师板书:(32+45)×5=32×5+45×5]

启发:比较这两个等式,它们有什么相同的地方?

2.深入体验,丰富感知。

现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

在得数相同的两个算式中间的□里画“=”

(1)(28+16)×7□28×7+16×7

(2)15×39+45×39□(15+45)×39

(3)74×(20+1)□74×20+74

(4)40×50+50×90□40×(50+90)

(5)(125×50)×8□125×8+50×8

分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

学生举例并组织交流。(比较这些等式是否具有相同的特点)

3.反思学习,揭示规律

提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律

(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

三、巩固内化知识,在实践中运用

谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

1.大显身手

出示“想想做做”第1题,让学生在书上填一填。

师:第2题你是怎么想的?

小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

2.生活应用

(“想想做做”第3题)

小结:说说两种方法的联系。

3.巧妙运用

(“想想做做”第4题)(同桌一人做一组,做在练习本上)

谈话:每组两道算式有什么联系?哪一题计算比较简便?

现在你知道上课开始时为什么B组同学算得快吗?

小结:乘法分配律可以使计算简便。

4.明辨是非

我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

王小明这样计算:

(3+2)×(34+36)

=5×70

=350(人)

①观察一下,你赞同王小明的算法吗?为什么?

②要用乘法分配律,要有什么条件?

5.巧猜字谜

猜一猜,等号后边是三个什么字?

人×(1+2+3)=

6.大胆猜想

如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

学生小组交流猜想。

谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

教师组织、引导学生总结得出:

(a-b)×c=a×c-b×c

小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

四、回忆梳理知识,在反思中总结

今天这节课,你有什么收获?

五、布置作业:“想想做做”第5题。

乘法分配律教学设计11

《乘法分配律教学设计【1】教学内容:P27:例8。

教学目标

知识与技能:引导学生探究和理解乘法分配律

过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。

教学难点:乘法分配律的反应用。

教具学具:多媒体课件

教学过程

一、复习引入

前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。

什么是乘法的交换律和结合律?

今天这节课我们再来学习乘法的另一个运算定律。

二、新课探究

出示主题图:还记得我们提出的第三个问题吗?

参加植树的一共有多少人?

1、你怎样解决这个问题?列式计算

2、汇报:

第一种算法:先算每个小组里有多少人?

(4+2)×25

=6×25

=150(人)

第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。

4×25+2×25

=100+50

=150(人)

3、观察这两个算是有什么特点?

4、讨论,你得到什么结论?

5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。

6、小结:这个规律就是乘法分配律

7、用字母怎样表示这个规律?

三、巩固练习

1、P27做一做

2、拓展:乘法分配律是否也适用于减法?

验证:18x5-5x8(18-8)x5

265×105-265×5265×(105-5)

结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。

教学目标:

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

过程与方法:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学重点和难点:

教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律

教学难点:乘法分配律的推理及应用。

教学过程:

一、复习引入,质疑猜想

1、出示口算题:

师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。

358+25+7572+493+2825×19×4

12×125×8168×5×214×2=

交流:你是怎样想的?

2、分组计算比赛

师:下面我们再来一场分组计算比赛,好不好?

出示:脱式计算

第二组题目:45×12+55×1234×72+34×28

第一、三组:(45+55)×12(72+28)×34

师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的`结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。

二、探究新知,验证猜想

1、出示:用两种方法计算这两个长方形中一共有多少个小方格?

8×4+5×4(8+5)×4

思考:为什么两个算式的结果相同呢?

左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。

2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。

(1)请提一个数学问题(淘气一共打了多少个字?)

(2)用两种方法解答问题

(3)思考:为什么两次计算的结果相同呢?

3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。

能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)

想一想:这里的分配,表示什么意思?(表示分别配对的意思。)

师:这道等式反过来写,依然成立吗?

三、巩固新知,应用定律

1、填一填:

4×(25+8)=__×___+___×__

38×37+62×37=___×(___+___)

502×19+11×502=___×(___+___)

48×99+48×1=___×(___+___)

a×b+a×c=___×(___+___)

2、判断对错:

8×(125+9)=8×125+9()

27×8+73×8=27+73×8()

(12+6)×5=(12×5)×(6×5)()

(25+9)×4=25×4+9×4()

3、试一试

(1)观察(40+4)×25的特点并计算

(2)观察34×72+34×28的特点并计算

4、分组计算比赛

85×16+15×16(40+8)×25

68×128-68×2834×(100+20)

四、总结全课

今天,我们又发现了什么?

五、课外思考

其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律

板书设计:

乘法分配律教学设计12

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的.结果会怎样?

要验证我们的算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

乘法分配律教学设计13

—乘法分配律教学设计与反思

设计说明

当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标

1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。

2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表

达数学规律的意识,进一步体会数学与生活的联系。

3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一:创设情境导入

提问:长方形的面积怎样求?

指明回答

这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)

学生动手操作

(课件出示两个长方形组合的动画)

二:自主探索,交流合作

1、交流算法,初步感知

提问:请同学们自己求一下新长方形的面积。

教师巡视,观察学生不同的解法

反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导

(课件出示两种解法)

谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?

学生自己写一写,请学生说一说,教师相机板书。

2、比较分析,深入体会

提问:算式左右两边有什么相同和不同之处呢?小组内交流。

反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。

设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。

组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。

3、规律符号化,揭示规律

提问:像这样的算式,写的完吗?

我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。

反馈引导学生用不同的方式来表达规律。

小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)

三:实践运用,初步理解。

1、想想做做1

学生自主完成,组织交流。

第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是

12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)

2、想想做做2

自主完成,组织交流。

第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个

74,也就是74.

第四小题要和想想做做题1的第二小题做对比。

四:拓展延伸,内化新知

再次出示两个长方形纸片,提问:如何比较这两个长方形的大小

学生反馈,引导说出可以重叠比较。学生动手实践

再问:那么大长方形比小长方形大的面积是那一块?

让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。

学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。

学生反馈,交流。课件出示两种解法。

谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。

再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。

谈话:这个规律用字母如何表示呢?自己试着写写看。

学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。

想想做做题5

课件出示,学生读题。

问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的.解释两个 算式之间的联系。

问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对

乘法分配律延伸的理解与内化。

反思:

这节课我是分三个层次来教学。

第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。

第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。

最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。

乘法分配律教学设计14

教学目标

1、使学生理解乘法分配律的意义。

2、掌握乘法分配律的应用。

3、通过观察、分析、比较,培养学生的分析、推理和概括能力。

教学重点:乘法分配律的应用

教学难点:乘法分配律的反应用。

教具:教学课件一套

教学过程:

一、比赛激趣,提出猜想

(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

7×28+7×72

7×(28+72)

(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

7×28+7×72=7×(28+72)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

二、引导探究,发现规律。

1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

(1)看到这幅图画,你了解到了什么信息?你想提什么问题?

(2)你能用两种方法列出综合算式吗?

(3)学生独立列式,教师巡视

(4)交流反馈:你是怎么想的,怎样列式计算

板书:65×5+45×5 (65+45)×5

(5)观察这两个算式,你有什么发现?

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的`例子吗?(板书:举例)

把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

4、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

(5)大屏幕出示关于乘法分配律的总结,学生齐读。

三、探索发展,应用规律

(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(8+4)× 25 34 ×72+34 ×28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

四 、巩固内化

1、 做“想想做做”第1题

学生独立填写,指名报,全班共同校对。

明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

2、 做“想想做做”第2题

学生自己判断。然后请生说说判断的依据。

3、 做“想想做做”第3题

让每位学生都用两种方法计算长方形的周长,指名板演。

明确:这两种算法有什么联系?符合什么规律?

小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

4、 做“想想做做”第4题

让学生各自按运算顺序计算,指定两人板演,共同订正。

提问:每组两道算式有什么联系?哪一题的计算比较简便?

小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

五、 总结回顾

乘法分配律教学设计15

教学目标:

1、通过经历探索乘法分配律的活动,发现并理解乘法分配律

2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。

3、渗透“从特殊到一般”的数学思想和方法。

教学重点:指导探索乘法分配律

教学难点:发现并归纳乘法分配律

教具:课件

教学过程:

一、创设情境,生成问题。

师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。

出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?

师:你能用几种方法解答?

生1:(72+28)×2

生2:72×2+28×2(板书两个算式)

师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。

生计算。

师:请选择第一个算式的同学,说出你的计算结果。

生:长方形的周长是200米。

师:谁选择的第二个算式,结果又是多少呢?

生:我算的结果也是200米。

师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?

生:可以

板书:(72+28)×2=72×2+28×2

出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?

师:这道题你有能用几种方法解答?结果是多少?

(生计算,汇报)

生1:我列的算式是32×64+18×64,结果是6400元。

师:有没有用不同的方法的?

生2:我列的算式是:(32+18)×64,结果也是6400元。

师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。

板书:(32+18)×64=32×64+18×32

师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?

生:可能有规律。

师:真的有规律吗?

【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】

二、探索交流,归纳规律。

师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。

师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?

生:不能。

师:那该怎么办?

生:找更多的这样的等式。

师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。

(生举例验证)

汇报:

生1:(3+2)×5=3×2+2×5

师:你计算过了吗?

生1:算了,两边的结果都是30.

师:很好,其他同学还有吗?

生2:(30+50)×5=30×5+50×5

生3:(24+76)×2=24×2+76×2

……

师:同学们都找到了这样的式子吗?

生:是。

师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?

(生思考)

生:老师,我能。

师:你说说看。

生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。

师:同学们,你听明白了吗?

生:明白了。

师:那你能用这个思路说说你举得例子吗?

生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4

……

师:现在我们再来思考,有没有可能像这样的式子两边不相等?

生:不可能,两边的结果一定相等。

【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】

师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?

生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。

生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。

生3:(A+B)×C=A×C+B×C

生4、(a+b)×c=a×b+a×c

生5、(○+□)×◎=○×◎+□×◎

师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?

生:第三个用小写字母的那一个。

师:你为什么觉得这个好?

生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。

师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。

(通过读式子,完善语言表达)

【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】

三、巩固应用,内化提高

1、火眼金睛,判对错。

56×(19+28)=56×19+28

64×64+36×64=(64+36)×64

32×(3×7)=32×7+32×3

2、思维敏捷,连一连。(把结果相同的两个式子连起来)

①(42+25+33)×26 ①20×25+4×25

②36×15-26×15 ②(66+34)×66

③66×66+66×34 ③42×26+25×26+33×26

④38×99+38×1 ④(36-26)×15

⑤(20+4)×25 ⑤38×(99+1)

师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。

生1、我算的是(20+4)×5=20×25+4×25,结果是600.

师:你是把两边的式子都计算了吗?

生1:没有,我是算的右边的那个式子。

师:你为什么没用左边的式子计算呢?

生1:右边的那个式子计算起来简单。

师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。

生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。

师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?

生1:不是.

生2:是,就是把它给倒过来用的。

师:是的,这是乘法分配律的`逆应用,也可以用来简化计算。

生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。

师:看了这个等式,你有什么想说的?

生:我们刚才做的都是带“+”的,可是这个是“-”。

师:看来我们的乘法分配律还有新的内涵呢。

补充板书:(a-b)×c=a×c-b×c

师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?

生4:我算了,结果是2600,算的是左边的那个式子。

师:看了它,你有没有想说的?

生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。

师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?

生:能。

3、合理选择,算一算。

312×12+188×12

101×87

(53+47)×23

【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】

四、拓展延伸,引发思考。

这节课我们共同来研究了乘法分配律,除法有没有分配律呢?

板书:(a+b)÷c=a÷c+b÷c ?

同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。

【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。】

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:乘法分配律教学设计  分配律  分配律词条  乘法  乘法词条  教学设计  教学设计词条  
教学设计

 朱自清春教学设计

春的教学设计与反思推荐度:初中七年级语文《春》教学设计推荐度:朱自清荷塘月色教案推荐度:《江南春》教学反思推荐度:挑山工教学设计推荐度:相关推荐朱自清春教学设计...(展开)

教学设计教学设计

 自我保护教学设计

自我保护教学设计(通用3篇)作为一名专为他人授业解惑的人民教师,时常需要用到教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。...(展开)