推荐度:
推荐度:
推荐度:
相关推荐
作为一名老师,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么你有了解过教案吗?下面是小编为大家整理的分数的基本性质教案7篇,仅供参考,欢迎大家阅读。
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据 120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
请同学观察,思考和讨论。投影出思考题:
如何?
结果如何?
变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?
学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)
的变化规律是什么?(学生小组讨论后汇报)教师板书:
教师:试说一说这时分子、分母的变化规律?
学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。
教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。
请学生打开书读两遍。
教师:想一想,如何用整数除法中商不变的"性质说明分数基本性质?(举例说明)
用学生自己的例题说明后,用投影片再说明:
口答填空:(投影片)
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在( )里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
板书设计
内容:P15、16例1、2 ,练习四第1-3题。
目标:
1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。
2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
重点:正确理解与分析运用分数的基本性质。
过程:
一、创设情境,导入新课。
“大圣”分桃:
话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?
二、师生共研、发现规律。
师生共同揭秘“分桃”内幕。
人分桃的全过程,我们可将“齐天大圣”的`分桃秘招公著如下:
1÷2=1/2=2/4=4/8
从上面这三个分数的相等关系,你发现了什么?
从左往右看:
1/2 = 1×2 / 2×2 = 2/4
从右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。
观察分子、分母的变化,同时归纳小结。
学生试,验证自己提出的观点是否正确。
小结:
分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。
三、数学小报,再次验证。
1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。
2.将折得的小报中数学趣题版用阴影显示出来。
3.将四张的折叠结果重叠,得出数学趣题版面大小。
4.针对式子进行口头表述。
四、理解性质、简单运用。
例2的教学
(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。
请同学们理清题意,然后进行转化。
(2)反馈。
(3)质疑
让学生通过讨论,深化对分数大小不变的要求的理解。
(4)议一议
由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。
五、练习巩固、拓展提高。
1.课堂活动
2.提取第一题的结果,进行深入思考:
当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?
结论:大小不变,分数单位要变。
六、全课总结:
这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?
七、作业:
练习四第1-3题。
教学目的
1.使学生理解和掌握分数的基本性质.
2.培养学生观察、思考、动手操作和自学能力.
教学过程
一、导入新课.
故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).
分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)
到底谁回答得对呢?上完这节课你们一定能得到准确的答案.
二、新课.
(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
.(板书: )
(2)教师提问:比较一下阴影部分的`大小,结果怎样?
阴影部分相等,说明这三个分数怎样?
(随着学生回答老师将三个分数用“=”连接)
(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?
(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接)
2.初步概括分数基本性质.
(1)观察两个等式,每个等式的三个分数什么变了?什么没变?
(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.
板书:
(3)谁能用一句话把这个变化规律叙述出来?
(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?
板书:
(5)问:谁能用一句话把这个变化规律叙述出来?
谁能用一句话把这两个变化规律叙述出来?
(板书:或除以)
3.完整分数基本性质.
填空:
教师追问:第三题( )里可以填多少个数?第4题呢?
为什么3、4题( )里可以填无数个数?
( )里填任何数都行吗?哪个数不行?(板书:零除外)
这里为什么必须“零除外”?
教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.
(板书课题:分数基本性质)
4.深入理解分数基本性质.
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.
1.用直线把相等的分数连接起来.
2.把下列分数按要求分类.
和 相等的分数:
和 相等的分数:
3.判断下列各题的对错,并说明理由.
4.填空并说出理由.
5.集体练习.
四、照应课前谈话.
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.
这节课你有什么收获?
六、布置作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
(一)激趣引思、提出要求
同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
(二)自主探究,发现规律
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排
1、实验目的:验证猜想
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的.大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?
师:为什么要0除外?
师:这就是咱们今天学习的“分数的基本性质”(板书课题)
师:谁来说说看,分数的基本性质是什么呢?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
(三)巩固练习,强化记忆
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)
他们这样填是根据什么?
3、出示练习十一第二题
独立完成,集体订正。
(四)课堂作业,运用知识
练习十一第三题
(五)课堂,认识自己
今天这节课,你学到了什么?
教学目的:
理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。
教学准备:
板书有关习题的幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的"数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?
这节课,戴老师教师教态自然、语言清晰、数学语言表述准确。着重培养了学生通过动手操作的活动来让学生主动探究分数的基本性质,掌握分数的基本性质在生活中的实际应用,同时培养了学生积极参与,团结合作,主动探索,引导观察鈫捬罢夜媛桑发现规律,我觉得这是一堂充满生命活力的课堂,能促进学生全面发展的课堂,体现新课标理念的课堂,从中我得到了一些鲜活的.经验和有益的启示。具体概括以下几点?
一、教学思路清晰,目标明确,重难点突出。
教师根据教学内容,因材施教地制定了教学思路。这节课以鈥湸瓷枨榫车既胄驴沃傅嘉探索,整个教学思路清晰。这节课戴老师突出培养学生动手操作,主动探究的训练,通过用三张同样大的长形纸折一张的、涂色等活动来探索分数分子、分母的变化规律,从而让学生发现规律,突出重难点的内容,整个教学做到详略得当,重难点把握准确。这样设计符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力?
二、创设情境,重视操作活动,发挥主体作用。
老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。
三、练习设计具有层次性,开放性。
由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。
教学目标:
1、理解分数的基本性质。
2、初步掌握分数的基本性质。
3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。
教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。
设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。
在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。
通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的`具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。
第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。
教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =
从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。
请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习
(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)
3、请找我的好朋友练习。(以游戏的形式来进行)
要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。
( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)
4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )
(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)
5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。