推荐度:
推荐度:
相关推荐
作为一位不辞辛劳的人民教师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。那么大家知道正规的教案是怎么写的吗?下面是小编整理的《最小公倍数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的`最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的"基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。
(4)求三个数的的方法。
求三个数的与求两个数的的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
教学内容 :
公倍数、最小公倍数的概念及求两个数的最小公倍数的方法。课本 P88~90 例 1、例 2。
教学目标
1.知识与技能:理解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
重点难点:求两个数最小公倍数的方法。
教学过程:
一、复习旧知识
1、写出下面各数的倍数
3的倍数有:()
2的倍数有:()
2、学生汇报填写结果,教师板书记录
3、说一说,你对倍数有什么理解?
学生回答
二、创设情境
出示阿凡提的故事
1、教师:请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?我们如何解决这个问题?
教师:这就是我们这节课要学习的内容:最小公倍数(板书)
2、出示日期,让学生找出巴依老爷休息的日期和标出账房先生休息的日期
3、展示问题(让学生回答)
(1)老渔夫休息的日子有哪几天?4,8,12,16,20,24,28 它们都是()的倍数
(2)小渔夫休息的日子有哪几天?6,12,18,24,30
它们都是( )的倍数
(3)老渔夫和小渔夫同时休息的日子有哪几天?12,24
它们是( )和()共同的倍数
(4)我最早应在几号去拜访他们?12
4、总结问题后,导出课题:最小公倍数
5、出示问题:(通过上面的问题以及以前学过的最大公因数的概念我们可以知道)
(1)什么叫公倍数?
(2)什么叫做最小公倍数?
6、学生:回答
教师:几个数公有的倍数,叫做这几个数的公倍数,其中最小的`一个,叫做这几个数的最小公倍数。
三、讲授新课
1、我们已经知道了什么是最小公倍数,那么我们就一起来试一试
(1)、找出6和9的最小公倍数
6的倍数:6 ,12 ,18,24 30,36……
9的倍数:9,18,27,36……
6和9的公倍数:18,36……
6和9的最小公倍数:18
教师:同学们会找两个数的最小公倍数了吗?
学生:会
(2)求3和2的最小公倍数
全班交流并板书。
还可以这样表示
3的倍数 2的倍数
2
(3)怎样求6和8的最小公倍数?
四、通过这几题的学习,观察一下: 观察一下,两个数的公倍数和它们的最小公倍数之间有什么关系?
学生:
教师:我发现:两个数的公倍数都是它们最小公倍数的倍数
五、归纳总结:
找最小公倍数的方法
(1)先分别找出两个数的倍数
(2)再找出两个数的公倍数
(3)其中最小的一个就是它们的最小公倍数。
六:随堂练习:
1、求下列每组数的最小公倍数。
2和8 3和8 6和156和9
4和106和8 4和108和10
2、下面的说法对吗?说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
3、练习:六盘水火车站是12路和13路公交车的起点站。12路每3分钟发车一次,13路公交车每5分钟发车一次。这两路公交车同时发车以后,至少再过多久又同时发车?
七、渗透法制教育《中华人民共和国道路交通安全法》
第六十二条 行人通过路口或者横过道路,应当走人行横道或者过街设施;通过有交通信号灯的人行横道,应当按照交通
信号灯指示通行;通过没有交通信号灯、人行横道的路口,或者在没有过街设施的路段横过道路,应当在确认安全后通过。 ? 第五十一条 机动车行驶时,驾驶人、乘坐人员应当按规定使用安全带,摩托车驾驶人及乘坐人员应当按规定戴安全头盔。
?第六十六条 乘车人不得携带易燃易爆等危险物品,不得向车外抛洒物品,不得有影响驾驶人安全驾驶的行为。
问题结束:你们现在知道阿凡提是哪一天去巴依老爷家的了吗?
八:布置作业
一、教材简析
《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。
二、教学目标及教学重、难点
根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:
2.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。
3.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。 教学重点: 公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。
教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。
三、设计理念
数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本1.让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。 思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。
四、教学过程
(一)故事引入 感知概念
出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的"时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。
根据学生的汇报,教师完成板书:
巴依老爷的休息日 4、8、12、16、20、24、28 ??
账房先生的休息日 6、12、18、24、30 ??
他们共同休息日 12、24??
最早的休息日12
【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。
(二)加深理解 总结方法
1.公倍数和最小公倍数的概念教学
从“巴依老爷的休息日” 、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、 “4和6的最小公倍数”)。教师完成板书
巴依老爷的休息日(4的倍数) 4、8、12、16、20、24、28 账房先生的休息日(6的倍数) 6、12、18、24、30 ?? 他们共同休息日(4和6的公倍数) 12、24
最早的休息日 (4和6的最小公倍数) 12
【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。
2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)
【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。
(三)巩固运用
再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)
出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?” 问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)
【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。
(四)解决问题 深化理解
在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)
【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。
教学目标
(1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。
(2)综合运用知识,进一步沟通知识间的联系。
教学重点、难点
重点、难点:能够根据不同,灵活运用简捷的方法。
教具、学具准备
教 学过程
备 注
一、基本练习
1、填空。(课本第67页第7题)
(1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。
(2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()
(3)在4、9和16中,成互质数的两个数有()和();()和()。
(4)三个素数的最小公倍数是42,这三个素数是()、()和()。
(5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。
学生先填在书上,再集体交流讨论,注意让学生说说思考方法。
2、很快说出下面每组数的最大公约数和最小公倍数。
11和49和65、10和20
16和1580和20年5、6和7
说的过程中注意让学生说出思考的过程及理由。
3、求下面各组数的最大公约数和最小公倍数。
80和10015、8和30
25和330、60和75
19和388、9和10
让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。
二、综合练习
1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?
整数自然数整除约数倍数
奇数偶数合数素数质因数
公约数最大公约数公倍数最小公倍数
教学过程
备 注
例2:2和8都是自然数,8能被2整除,8是2的.倍数。
2、动脑筋:下面每组数中,你能找出不同类的数吗?
(1)1473.82345
(2)21216223647
(3)23792943
学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.
3、猜一猜老师家的电话号码.
老师家的电话号码是七位数,排列如下:
()最小的素数
()7的最大约数
()8的最小倍数
()最小的自然数
()最小的合数
()最小的一位奇数
()既不是素数也不是合数的数
三、课堂
师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?
四、作业
1、课本上第9、10题中剩余题目各选一列。
2、《作业本》
教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
教学重点:
教学难点:
使学生学会并理解求两个特殊数的最小公倍数的方法。
教学实录:
一、引入:
师:同学们,现在是什么季节?
生:春天。
师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。
点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值
二、新授
1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?
生①:解决了。
生②:没有解决,过一段时间,它们会一起回来的。
师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。
(2)学生讨论
(3)学生汇报
师:哪个小组来展示你们的研究成果?
生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。
师:这种方法形象直观,非常好,还有不同和方法吗?
生②:用数轴证明。(学生在展台演示)
师:大家认为这种方法怎么样?
生:简洁清楚。
师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?
生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。
板书:30的倍数:30 60 90 120
40的倍数:40 80 120
(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。
[点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]
2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。
学生验证。
学生汇报。
生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。
师:恩,还是不行,我们发现60和90也有公倍数。
3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。
生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。
师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的"公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。
点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。
4.找最小公倍数
4和8 5和10 6和15 6和9 4和5
让学生找出每组数的公倍数。
师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?
生:大数要是小数的倍数,大数就是它们的公倍数。
师:你们还能发现了什么?
小组讨论,之后汇报。
生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生②:5和10的最小公倍数是10,并不是它们的乘积。
生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。
点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。
三、总结
师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。
设计思路:
“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。
评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。
1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。
2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。(作者:山东省济南市市中区教研室 董惠平 山东省济南市胜利大街小学 唐忠亮 吴颖昕 王婷)
教学目标:
1、结合具体情境,理解公倍数和最小公倍数的意义,体会公倍
数和最小公倍数的运用。
2、探究找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、能积极探究生活中的数学问题,体会数学问题的探索性和挑战性。
教学重点:探究找公倍数的方法。
教学难点:会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一:复习导入,初步感受
师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?
生:3的倍数有3、6、9、12、15,…
师:2的倍数呢?
生:2的倍数有2、4、6、8、10,…
师:3和2的最小倍数各是几?
生:都是它们本身。
师:那么,为什么在说倍数时要加省略号呢?
生:一个数的倍数个数是无限的,所以要加省略号。
(师出示教材第51页数表,在这张数表中有50个数。请同学们用△标出4的倍数,用○标出6的倍数。)
(生操作圈数)
师:谁能说说4的倍数?
生:4的倍数有4、8、12、16、…,48。
师:6的倍数呢?
生:6的倍数有6、12、18、24、30、…,48。
师:在圈数时,你们发现什么?
生:我们发现有些数既是4的倍数,又是6的倍数。
师:能举例说明吗?
生:如12、24、36、48。这些数既用△标出,又用○标出,所以它们既是4的倍数,又是6的倍数。
二、顺理成章,概念
师:那么,能否给这些数起一个名字吗?
生1:我起的名字叫共同的倍数。
生2:这个名字太长了,叫公倍数更好.
师:这个名字起的好,在数学上把这些数都叫做公倍数,那么谁来一下什么叫做公倍数?
生3:公倍数就是这几个数共同有的倍数.
师:那么,在这几个数的"公倍数中,谁给"12"也起个名字?
生4:它是最小一个,所以它的名字叫最小公倍数.
师:有没有最大公倍数呢?
(师生共同讨论)
三.方法,实际应用
师:请同学们回顾一下,刚才我们是用什么方法引出公倍数的?
(学生的发言,板书:枚举法)
师:在寻找最小公倍数时,经常用到枚举的方法。下面请用这个方法作第51页的填一填。
(学生练习,在他们汇报时,,教师应指导集合圈的写法。)
师:谁来汇报的结果?
(学生展示各自的练习)
师:在做这一题时,还有其他的想法吗?
生1:我认为用书上的方法寻找最小公倍数太麻烦,所以我不用这个方法也能求出6和9的最小公倍数。我在想6的倍数,想到8这个数时,就发现它也是9的倍数,那它一定是6和9最小公倍数,这样就不用写到50了。
生2:我同意他的看法,不过应该从9的倍数找起会更快。因为9的倍数比6的倍数大,会找的更快。
生3:我发现3和5的最小公倍数是15,就是3×5得到的,所以求最小公倍数就用两个数相乘就行了。
生4:我不同意,6和9相乘得54,而6和9的最小公倍数时18。
生5:我发现54要是除以6和9的最大公因数3就是18了。
师:那么,,同学们对这几位同学的发现有什么看法?不妨通过几组数来考证一下这几位同学的想法,从而一下求最小公倍数的几种方法。
(出示教材第52页第3题,学生独立求最小公倍数,然后在小组里讨论有什么发现。师生共同求3种类型的数的最小公倍数的方法。)
(出示教材第52页的第4题,讨论解决具体的实际问题。)
四、收获
师:今天的学习你有什么收获?
师:()同学们不仅很好地理解了公倍数和最小公倍数的含义,又掌握了求公倍数和最小公倍数的的方法。
教学内容:
苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。
教学目标:
1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。
2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。
教学重点:
求两个数的公倍数和最小公倍数。
教学难点:
理解求公倍数和最小公倍数的方法。
教学准备:
小黑板
教学过程:
一、揭示课题
揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)
提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?
引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)
二、学习新知
1.认识公倍数。
(1)出示例11,让学生说说知道了些什么,提出的什么问题。
引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?
交流:哪个正方形能正好铺满,哪个不能铺满?
提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?
说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。
(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。
交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)
你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?
(3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)
追问:8是2和3的公倍数吗?为什么不是?
那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?
2.求公倍数。
出示例12,明确要找6和9的公倍数和最小的公倍数。
让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?
结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。
小结:大家用不同的方法找出了6和9的.公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。
追问:有没有最大的公倍数?为什么?
说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)
3.用集合图表示公倍数。
引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。
让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。
指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。
三、巩固深化
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习七第9题。
4.做练习七第10题。
四、总结提升
引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?
课时:1
教学准备:
教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。
2、通过输理、比较,建立相关概念的关系。
3、、在游戏、应用中体验数学的趣味性。
基本教学过程:
一、一、基本练习
1、复习找因数、公因数的方法:
练习第一题。
学生填写后,说说你是怎么想的。巩固找公因数的方法。
2、复习约分的方法:
练习第二题先约分,再连线。
二、运用知识模型:
1、复习分数的意义、约分等知识的综合运用。
第3题。
让学生自己用分数表示,并交流自己的思考方法。
2、第4题。
先让学生找出分数,并说说自己的思考方法?
3、第5题。
本题开放性强,学生可以自由分割,并用分数表示。
三、思考题:
本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的"实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。
四、实践活动:
先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。
四、总结:教学反思:
内容:公倍数与最小公倍数
课时:1
教学准备:
教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
基本教学过程:
一、一、创设活动情境,进行找倍数活动:
二、出示题目和8月份的日历:
1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。
2、把这些数写下来。
二、自主探索,总结找两个数的公倍数的方法:
1、观察这些数有什么特点?
2、再观察两人同时去少年宫的日子有什么特点?
3、师总结:揭示公倍数和最小公倍数的概念。
填一填:第48页
①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。
②学生讨论交流找公倍数的基本方法。
③还有其他方法吗?(鼓励学生用其他方法找公倍数)
4、师总结:找公倍数和最小公倍数的方法
三、拓展引思:
1、第49页练一练
第一、二题
让学生独立填一填,再交流。
教学反思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
分数的大小
教学目标
1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。
2、进一步加深对分数意义的理解,培养学生的发散思维能力。
3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。
教学过程
(一)、创设情景谈话激趣
师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?
生:非常6+1幸运52
师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:
A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。
B、如果哪一组不听人家的回答则倒扣一颗星。
C、最后看哪一组胜利相应进行奖励。
师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)
教学内容:教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:弄清公倍数和公因数联系与区别。
教学过程:
一、揭示课题
今天我们继续完成一些公因数、公倍数的有关练习。
二、基础训练
1.写出36和24的公因数,最大公因数是多少?
2.写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,汇报交流。
说说自己是用什么方法找到的?
三、综合练习
1.完成练习五第12题。
谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
在书上完成连线后汇报方法。
你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?
2.完成第13题。
独立完成。交流各自方法。
3.完成第14题。
独立完成。交流各自方法。
求最大公因数和最小公倍数的方法有什么相同和不同?
什么情况下可以直接写出两个数的.最大公因数?什么情况下可以直接写出两个数的最小公倍数?
4.完成思考题。
(1)小组讨论方法。
(2)指导解法。
把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。
5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法
四、课堂
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。
教学目标
1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。
2、理解分倍数和最小公倍数的含义。
3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。
教学重点
教学难点理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。
教学方法合作学习法、小组探究法、知识迁移法
教学准备复习题
教学过程:
一、温故知新
1、什么叫公因数?
2、什么叫最大公因数?
3、写出下列各组的最大公因数
3和7 4和6 9和18 12和30
引出新课
二、师生共研
1、公倍数和最小公倍数的认识。
以4和6这组数为例,就在50以内数表中找一找。你发现了什么?
(1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。
(2)6的倍数:6、12、18、24、30、36、42、48。
(3)两个都有的:12、24、36、48。
引出课题:公倍数和最小公倍数
2、怎样找出两个数的.最小公倍数介绍短除法
(1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。
(2)反馈时围饶着以下几个方面交流:
短除式中除数是2的什么数?
为什么在得出商2和3时不再往下除?
4和6的最小公倍数是怎么计算的?
(3)师生共同探究与交流。
(4)试一试:你能找出12和16的公倍数和最小公倍数吗?
让学生用自己喜欢的方式找一找,再用另一种验证。
重点反馈短除法。
3、探究特殊关系的两数怎样确定它们的最小公倍数。
先让学生独立完成
思考后交流自己的发现
三、全课总结
1、这节课我们交的新朋友是什么?你现在对它知道多少?
2、怎样找两个数的最小公倍数?
(1)先定关系
(2)确定用什么方法找
3、有什么问题或发现?
四、布置作业:
2、3、4、5
教学目标
1.掌握公倍数、最小公倍数两个概念.
2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.
教学重点
建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.
教学难点
理解求两个数最小公倍数的算理.
教学步骤
一、铺垫孕伏.
1.导入:这节课我们开始学习有关最小公倍数的知识.
(板书:最小公倍数)
2.复习倍数的概念.
二、探究新知.
教学例1
例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?
4的倍数有:4、8、12、16、20、24、28、32、36……
6的倍数有:6、12、18、24、30、36……
4和6的公倍数有:12、24、36……
其中最小的一个是12.
1、学生分组讨论总结公倍数、最小公倍数的意义.
2、用集合图表示4和6的公倍数.
3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?
明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.
4、反馈练习.
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.
明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.
(二)教学例2
引入:我们用分解质因数的方法求两个数的最小公倍数.
例2:求18和30的最小公倍数.
1、用短除式分别把18和30分解质因数.
板书:18=2×3×3
30=2×3×5
教师提问:18的倍数必须包含哪些质因数?
(18的倍数包含18的所有质因数)
30的倍数必须包含哪些质因数?
(30的倍数包含30的所有质因数)
18和30的公倍数必须包含哪些质因数?
(既要包含18的所有质因数,又要包含30的所有质因数)
2、观察集合图:18和30的"最小公倍数应包含哪些质因数?
教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.
3、小组讨论:如果少一个或多一个质因数行不行?
教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.
板书:
18和30的最小公倍数是2×3×3×5=90
4、反馈练习.
(1)先把下面两个数分解质因数,再求出它们的最小公倍数.
30=()×()×()
42=()×()×()
30和42的最小公倍数是()×()×()×()=()
(2)A=2×2B=2×2×3
A和B的最小公倍数是()×()×()=()
(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?
可能错在哪里?
5、求最小公倍数的一般书写格式.
①引导学生把两个短除式合并成一个.
板书:
②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.
③反馈练习:求30和45的最小公倍数.
④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.
⑤反馈练习:求下面每组数的最小公倍数
6和824和20xx和2116和72
三、全课小结.
今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.
四、随堂练习
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.
2.判断.
(1)两个数的积一定是这两个数的公倍数.()
(2)两个数的积一定是这两个数的最小公倍数.()
五、布置作业.
求下面每组数的最小公倍数.
12和1530和4036和5422和33
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学准备:
长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。
教学过程:
复习
今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?
那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?
看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。
一、经历操作活动,认识公倍数
1、操作活动
提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看
拿出手中的图形,动手拼一拼。
学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。
提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)
铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)
2、想像延伸
提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。
生可能的想法:
⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。
在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)
⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。
如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?
3、揭示概念
讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)
说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。
引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索
提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?
学生自主活动,然后在小组里交流。
生可能想到的方法:
⑴依次分别写出6和9的公倍数,再找一找。
提问:你是怎样找到6和9的公倍数的`?又是怎样确定6和9的最小公倍数的?
⑵、先找出6和倍数,再从6的倍数中找出9的倍数。
⑶、先找出9的倍数,再从9的倍数中找出6的倍数。
引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?
2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)
3、用集合图表示。
说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?
引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?
4、做“练一练”
要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。
集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)
三、巩固练习,加深对公倍数和最小公倍数的认识
1、做练习四的第1题
要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。
提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?
2、做练习四第2题
要求:先在表中分别写出两个数的积,再填空。
引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?
3、做练习四的第3题
要求:自己找出每组数的最小公倍数。
集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。
四、全课小结
提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?
引导:你还有什么疑问吗?
五、游戏活动
要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。
提问:涂色的方格里写的数与3和4有什么关系?
教材分析:
本课教学内容是要让学生学会用数学的眼光来思考并分析身边的问题,教材中的铺砖这一实际生活离学生的实际生活还有一定的距离,课前我特意创造性加入了课前的游戏将公倍数知识蕴藏在游戏活动中,让学生在解决实际问题前能够感悟知识与生活的紧密联系。
学情分析:
五年级下学期的学生已经具备了一定的生活实际经验,但是铺砖的生活情境离学生还是有一定的距离,让学生在课堂当中动手操作,可以给学生更多的思考和交流空间。让抽象的数学知识更形象。
教学内容:
人教版数学五年级下册70页以及相关练习。
教学目标:
1.学会用公倍数和最小公倍数的知识解决简单的现实问题,体验数学与生活的密切联系。
2.结合解决问题理解公倍数和最小公倍数的现实意义,进一步熟悉求两个数的公倍数和最小公倍数的方法。
3.在学生愉快的活动过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神,感受到数学学习的快乐和价值,让学生学会用数学的眼光分析并解决生活实际问题。
教学重难点:
重点:学会用公倍数和最小公倍数的知识解决简单的实际问题。
难点:体会公倍数和最小公倍数的现实意义。色圃中小
课前准备:
多媒体课件,方格纸,长方形学具,水彩笔。
教学过程:
一、课前引入
1.师课前谈话:各位亲爱的同学,我们已经认识了最小公倍数和公倍数,而且还学会了如何找两个数的最小公倍数和公倍数。为了表示对你们在学习上的收获。周老师在今天的这节课带给大家一首最原生态的歌曲,看看我们在共同庆贺的时候,还能在学习上得到什么!
2.师出示歌唱要求:一起来看歌唱要求:男生每2秒唱出歌词“嘿”,而女生则每3秒唱出歌词“哈”。师:大家已经明白要求了吗?一起来试一试。让我们一起关注时钟上跳动的.数字,按照要求一起唱出歌词。
3.在学生完成第一次试唱后,教师提问:根据要求,在哪些时钟数字时男生会唱出歌词?大家同意吗?师板书,同时小结(2的倍数)然后继续提出:男生已经找到了他们的时钟数字,看一看在下一次的歌声中,女同学也能找到属于你们的时钟数字吗?一起准备,请关注滚动的时钟数字。女同学们,你们是否已经找到了属于你们的时钟数字。请告诉我们,大家同意吗?师板书,同时小结(3的倍数)现在我们把歌声中再加入一点配乐,一起来看。能够做到吗?设计意图欢快的歌声让抽象的数学知识瞬间变得触手可及。而在欢快的歌声中,学生能够很自然地运用倍数的知识来说明并解决问题。让学生在不知不觉中建立起数学知识和活动要求的联系。以达到润物无声的效果。欢快的歌声也会激发出学生的学习兴趣和欲望,同时这样的数学课堂也别具感染力。能够增强学生参与课堂学习的积极性。
二、新授
1.看看我们的歌声中,加入了配乐会有多么的雄壮。并播放课件出示要求:男生每2秒唱出歌词“嘿”,同时拍桌子,而女生则每3秒唱出歌词“哈”同时击掌。
2.学生在完成歌唱后,教师提出:在我们的歌声中,只有男同学齐唱,女同学齐唱的歌声吗?(不是),那还有什么?对,还有男女生的合唱。你能找出男女生在哪些时候会一起唱出歌词呢?师板书数字,同时小结(2和3的公倍数)
3.在学生指出合唱时间后,教师相机提出:看来我们在歌声中还找到了关于倍数和公倍数的知识。接下来,让我们带上知识走入生活,一起解决实际问题。一起来看。
三、引入新知
师:出示张叔叔要用长3分米,宽2分米的长方形瓷砖在外墙铺一个正方形。(用的都是整块),你觉得可以铺出边长是多少分米的正方形?边长最小是多少分米?
1.阅读与理解师:请孩子们仔细读题,你知道了哪些数学信息?抽生回答,老师提取有价值的数学信息帮助学生理解。
2.分析与解答师:这个正方形的边长可能是多少?最小是多少?师:让我们带着自己的猜想分小组合作探究,教师出示活动要求:
(1)请你通过画一画,铺一铺或者写一写等方式去验证自己的猜想。
(2)小组长组织小组成员分工合作,积极参与,并讨论交流各自的操作发现。
(3)小组长对本组交流意见进行整理,填好记录单。
学生分小组操作(教师巡视,参与其中)师:哪些小组使用摆的方法,哪些小组使用了画的方法。请小组内成员展示自己组内的摆或者画的成果。配以记录单进行说明或者讲解。
(1)汇报铺出的正方形边长是多少?
(2)对铺出正方形的过程加以说明
(3)使用记录单,说明铺出的图形各边长度的变化
(4)确定正方形的边长数字是多少?
3.回顾与反思。
师提出:就只有这几种铺法吗?难道就要这样一直画下去、摆下去吗?
生:不需要,只要是2和3的公倍数都可以是正方形的边长。
师:看来,我们要把铺砖的实际问题转化成公倍数的问题,就能很容易地解决了。
师:用这样的瓷砖能铺出边长是4分米的正方形吗?能铺出边长是9分米的正方形吗?
师:看来要解决生活中这样的问题,首先要找到什么?
设计意图本环节的教学注重了学生对于解决问题的思考步奏,让学生在充分的活动中体验知识的生成过程,达到知其然而所以然的效果。学生的铺砖环节能够充分感受问题转化的过程,而记录单上数据的变化过程能够进一步提高学生归纳和总结的准确性和科学性。在回顾与反思中,让学生中我解决此类问题的基本方法和基本过程。既对知识进行了总结,还对解决问题的策略进行了渗透。
四、练习巩固
1.练习一看来,我们在歌声中再一次认识了公倍数和最小公倍数,而且也帮助张叔叔铺砖的实际问题。现在让我们带上知识走入生活,体会数学学习的价值!并出示:xx班同学参加植树活动,每6人一组,每9人一组都刚好完。而人数在40人以内,人数肯能是多少人?一起来看大屏幕,根据你的阅读并理解,你知道了哪些数学信息?现在呢?请告诉我们你的结果。
2.练习二
(1)出示练习二。xx班共有学生40人,参加植树活动,每4人一组,每6人一组都要刚好分完。如果全班同学都要参加,至少还要从别的班借多少人?
(2)阅读收集数学信息。
(3)抽生根据数学信息分析并解答。
3.走入生活第二季:
(1)出示:李老师生日的月份数是2的倍数,又是5的倍数,李老师可能出生在几月份?
(2)师提出:根据阅读,你作出了怎样的分析?在学生回答后,继续提出:现在我们可以把问题当中的一个词换作哪一个词?师:月份数一定是在10月,那日期数又是哪一天呢?继续探秘:
(3)出示:生日的日期数比4的倍数多1,比6的倍数也多1,李老师生日的日期数可能是多少?现在你如何分析呢?抽生回答。
五、课堂总结
在学生回答后,教师小结并赞美,顺势提出:让我们再一次走入歌声中,一起找到属于数学的快乐。一起题前祝愿李老师生日快乐。在学生的歌唱后继续追问:
第1次合唱是几秒?
第3次合唱是多少秒?
第101次合唱是多少秒?
现在怀着快乐的心情,你想告诉所有的同学和老师一点什么?
在学生总结后,出示结束语。
设计意图:
本环节使用歌声让学生来作为课堂总结的前奏,既能够让数学课堂充满乐趣,还能够让课堂教学首尾照应。快乐的歌声能够让学生在祝福的同时再一次提升对于公倍数知识的理解和认识,同时也是对学生在思想情感上的一次感悟,达到了知识渗透与情感育人并行的目的。
板书设计:
解决问题
长边铺出2,4,6,6,8,10,…(2的倍数)
宽边铺出3,6,9,12,15,…(3的倍数)
正方形边长6,12,18,…(2和3的公倍数)
说课:
“公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。
由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。
教学目标:
1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。
2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的习惯。
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究公倍数与最小公倍数。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
=2×3×2×5=60
从这两个分解质因数的式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的`一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。