快好知 kuaihz

平行四边形教案

平行四边形教案

推荐度:

平行四边形教案

推荐度:

平行四边形教案

推荐度:

相关推荐

【精华】平行四边形教案三篇

在教学工作者实际的教学活动中,总归要编写教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编为大家收集的平行四边形教案3篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行四边形教案 篇1

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

一、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的.面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

三、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

四、作业

练习十五第1题。

五、板书设计

平行四边形面积的计算

长方形的面积=长×宽 平行四边形的面积=底×高

S=a×hS=ah或S=ah

平行四边形教案 篇2

【学习目标】

1、平行四边形性质(对角线互相平分)

2、平行线之间的距离定义及性质

【新课探究】

活动一:

如图,□ABCD的两条对角线AC、BD相交于点O.

(1)图中有哪些三角形是全等的?有哪些线段是相等的?

(2)想办法验证你的猜想?

(3)平行四边形的性质:平行四边形的对角线

几何语言:∵四边形ABCD是平行四边形(已知)

∴AO==AC,BO==BD()

活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

(1)线段AC,BD有怎样的位置关系?

(2)比较线段AC,BD的长短.

(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

【知识应用】

1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.

3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

【当堂反馈(小测)】:

1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

【巩固提升】

1.平行四边形的两条对角线

2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

4、下列性质中,平行四边形不一定具备的是()

A、对角互补B、邻角互补C、对角相等D、内角和是360°

5、下列说法中,不正确的是()

A、平行四边形的对角线相等B、平行四边形的对边相等

C、平行四边形的对角线互相平分D、平行四边形的"对角相等

6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对进行证明。

9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

(1)多做几条这样的直线,看看它们有什么共同的特征

(2)试着用旋转的有关知识解释你的发现。

平行四边形教案 篇3

教学

目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题

重点

难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。

导学过程教师复备

(学生笔记)

复习回顾

1.平行四边形有哪些性质?

2.判别四边形是平行四边形的条件有哪些?

3.平行四边形的性质与条件的区别?

例题精讲

例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?

例2、如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的.中点,四边形GEHF是平行四边形吗?为什么?

反馈练习

1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)

2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?

3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由.

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:平行四边形教案  平行四边形  平行四边形词条  教案  教案词条  平行四边形教案词条  
教案教案

 《威尼斯的小艇》教案

《威尼斯商人》读后感推荐度:《威尼斯商人》读后感推荐度:《威尼斯商人》读后感推荐度:《威尼斯商人》读后感推荐度:《威尼斯商人》读后感推荐度:相关推荐《威尼斯的小...(展开)

教案教案

 中班教案

《蚕宝宝》中班教案推荐度:爱护环境中班教案推荐度:《病毒快躲开》中班教案推荐度:幼儿园中班教案推荐度:全国爱耳日中班教案推荐度:相关推荐实用的中班教案锦集5篇作...(展开)

教案教案

 《落花生》教案

《落花生》教案推荐度:《落花生》教案推荐度:《落花生》教案推荐度:相关推荐《落花生》教案集锦七篇作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是保证...(展开)