小数的意义教案
推荐度:
小数的意义教案
推荐度:
《小数的意义》教案
推荐度:
相关推荐
小数的意义教案【精】
作为一位优秀的人民教师,总归要编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?以下是小编精心整理的小数的意义教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
小数的意义教案1
【教学内容】
人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。
【教学目标】
1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。
2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。
3、培养学生探究发现、类推迁移的数学学习能力。
【教学重点】
在学生初步认识分数和小数的基础上,进一步理解小数的意义。
【教学难点】
理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。
【教学准备】
米尺、多媒体课件、立方体教具。
【教学过程】
一、【课前铺垫、创设情景】
教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。
二、【新课讲授】
1、认识一位小数
今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!
(出示米尺课件)学生仔细观察,回答问题。
教学例1。
教师提问:一起来数数,把1米平均分成了多少份?
学生一起数,得出结论(10份)。
提问:因为1米=10分米,所以这一份是多长?
学生观察后回答:1分米
小结:我们把1米平均分成了10份,每一份是1分米。
提问:1分米是1米的几分之几?()
(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)
教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)
想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)
由此得出:米=0.1米
(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)
提问:谁能说说0.3米表示什么意思?
同样,可以得出:米=0.3米
(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)
提问:谁能再来解释一下0.7米表示什么意思?
同理,可以写成:米=0.7米
(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)
教师旨在引导,学生观察发现
师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)
师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)
师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?
学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!
出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)
一起数数0.3米是由几个米组成的?(3个)
提问:那0.3里面有()个0.1?
这一段又是多长?(0.7米)
再来数数几个米组成0.7米?(7个)
提问:那0.7里面有()个0.1?
进一步强化训练:0.9里面有()个0.1?(9个)
请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)
提问:1里面有()个?(10个)
也就是说:1里面有10个0.1
提问:谁能告诉我1.2里面有()个0.1?(12个)
师:你是怎么想的?
教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1
师:这句话太重要了,谁能把它再说一遍!
点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)
反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?
2、认识两位小数
小小的米尺,大大的学问。
师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)
1厘米是1米的几分之几米呢?(米)
出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。
小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)
提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?
请大家翻开课本32面,把你的答案写在书上。
教师根据学生的回答,课件逐一出示答案。
师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)
师:请大家仔细观察,这次写出的都是几位小数?(两位小数)
师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)
师:那你发现了什么?
学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!
师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01
师:谁能把这句非常重要的话像老师这样说一说!
点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)
反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)
3、认识三位小数
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?
学生分组讨论交流,小组选派代表发言。
发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米
提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?
学生总结发现:
分母是1000的分数,可以用三位小数来表示。
三位小数的计数单位是千分之一,写作:0.001
点击出示发现!你们个个都是自学小能手!老师为你们点赞!
4、概括:小数的意义
师:通过刚才的学习,我们知道了:
分母是10的分数,可以用一位小数来表示
分母是100的分数,可以用两位小数来表示
分母是1000的分数,可以用三位小数来表示
谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)
学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)
师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……
这就是小数的意义,请大家齐读一遍。
学生齐读意义,教师板书课题~小数的意义
师:同学们可真棒!自己总结出了小数的意义!
5、总结:小数的计数单位
师:通过刚才的学习,我们也知道了:
一位小数的计数单位是十分之一,写作:0.1
两位小数的计数单位是百分之一,写作:0.01
三位小数的"计数单位是千分之一,写作:0.001
师:谁能尝试着把它们用一句话来总结一下?
学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)
师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。
师:这里的省略号表示什么意思?(说不完)看来同学们理解了!
6、小数相邻单位间的进率
(过渡)学习的过程就是不断地克服困难,战胜自我的过程。
师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?
教师出示正方体变形课件,逐步引导学生观察分析:
1里面()个0.1
0.1里面()个0.01
0.01里面有()个0.001
提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。
学生讨论发言。
小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。
师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?
学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)
请大家齐读一遍。
三、【巩固提升、练习反馈】
1.完成教材第33页“做一做”。(可以一题两问)
2.判断:争当合格小裁判(说出判断理由)
四、【课堂小结】
提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?
小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)
五、拓展延伸
板书设计
小数的意义:分母是10、100、1000……的分数,可以用小数来表示。
小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……
小数的进率:每相邻两个计数单位之间的进率是10。
小数的意义教案2
教学目标
知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。
过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。
情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解小数的意义及每相邻两个单位时间的进率是十。
教学难点:概括和理解小数的意义。
教法:启发引导法
学法:合作交流
教具学具准备:直尺。
教学过程
一、定向导学(5分)
1、判断下面哪些数是整数?
4、12、38、3.01、105、0.007、20xx、100.06。
整数每相邻的两个计数单位之间的"进率都是( )。
板书课题
2、揭示目标:
理解小数的意义及每相邻两个单位时间的进率是十。
二、自主学习(10分)
自学内容:课本p32-33上半页
方法:边看书边完成下面的要求。时间:5分钟
要求:
1、把1米平均分成10份,每份是( )米,写成小数是( )米;
把1米平均分成10份,3份是( )米,写成小数是( )米。
2、把1米平均分成100份,每份是( )米,写成小数是( )米;
把1米平均分成100份,15份是( )米,写成小数是( )米。
3、把1米平均分成1000份,每份是( )米,写成小数是( )米;
把1米平均分成1000份,27是()米,写成小数是( )米。
(1--6组的4号发言,1号评价)
三、合作交流:5分钟
1、什么是小数?
2、小数的计数单位是多少?
(7组的4号发言,1号评价)
四、质疑探究(5分)
每相邻两个计数单位之间的进率是多少?
五、小结检测(15分)
1、小结:
谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
2、检测:
a、填空。
(1)0.1是( )分之一,0.7里有( )个0.1。
(2)10个0.1是( ),10个0.01是( )。
(3) 写成小数是( ), 写成小数是( )。
b、判断:
(1)0.40里面有4个0.01。 ( )
(2)35克=0.35千克( )
元=0.7 元 ( )
=0.01 ( )
米 =0.3米 ( )
=0.03 ( )
=0.030 ( )
c、把小数改写成分数。
0.9 0.09 0.0359
3、堂清作业:教材p33页,p36、1.2
板书设计:
小数的意义
十分之一--------- 0.1
百分之一---------0.01
千分之一---------0.001
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
小数的意义教案3
教学内容: 小数的意义
教学目标:1、使学生理解小数的意义。
2、使学生认识数学知识源于实际生活,用于实际生活。
3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。
4、激发学生大胆质疑、问答,培养创新意识。
教学重点:理解小数的意义
教学难点:理解三位小数的.意义
教学准备:直尺、课件
教学过程:
课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?
一、看价签,引出小数
1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?
2、看课件。
3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。
4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。
5、汇报:(师选择板书)
6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。
7、汇报:生发现小数与分数之间的关系
二、解决实际问题
1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?
2、测量。以小组为单位:(1)测量身边物体的长度。(2)以米为单位用小数表示出来。(3)把测量结果写在记录单上
(主要解决三位小数)
三、小结
1、有关小数你还知道些什么?你是怎样知道的?
2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?
小数的意义教案4
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的`认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
小数的意义教案5
【教学内容】
【教学目标】
【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。
难点:用“四舍五入”法按要求求出小数近似数。
【教学过程】
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做期末复习第8题(1)、(2)、(3)。
(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.121
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么是小数的性质?
2、做期末复习第9题,第1竖行两题。
(1)学生在书上做,指名板演,集体订正。
(2)让学生说一说怎样比较两个小数的大小。
3、做期末复习第10题。
(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做期末复习第8题(4)、(5)。
(1)小数点向右移动,原来的`数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
4、做期末复习第9题剩下的两题。
(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(2)学生练习,集体订正。
(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
5、做期末复习第11题。
学生在书上做,并说明理由。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“”、“”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
小数的意义教案6
一、教学内容:小数的意义P32——P33
二、教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
三、教学重难点
重点:理解小数的意义。
难点:会用小数表示计量单位换算的结果。
四、教学准备
多媒体、米尺。
五、教学过程
(一)导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
板书:小数的意义。
(二)探索发现
1、认识一位小数。
(1)出示教材第32页例1米尺图。
把1平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书:
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米 ……
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的`放大图。
学生思考、小组交流后进行反馈:
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
3、小数的意义。
分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
(三)巩固发散
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
新人教版数学四年下第四单元小数的意义和性质教案(一)
( )元 ( )千克 ( )厘米
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
(五)板书设计
小数的意义
分母是10、100、1000……的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位间的进率是10。
六、教学后记
小数的意义教案7
教学目标:
1、通过练习进一步掌握小数加减法的计算方法。
2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。
3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。
教学重点:
小数加减混合运算的`方法和简便计算的方
教学难点:
小数加减混合运算的方法和简便计算的方
教法学法:
主动探究法、练习法。小组合作交流法
教学准备:
小黑板
教学过程:
一、复习导入新课
1、复习小数的意义。
2、怎样比较小数的大小。
3、怎样进行小数加减的计算。
二、展示交流。
专题训练一:完成课本18页第一题、第二题。
专题训练二:完成课本18页第三题
专题训练三;完成课本18页第四题。
专题训练四:完成课本18页第五题
专题训练五:完成课本18页第六题。
三、课堂小结
四、作业布置
完成相关配套练习。
五、单元测试
(一)小小知识窗看谁本领高!(25分)
1、里面有( )个,里面有( )个。
2、4个百、5个十、3个十分之一,组成的数是( )。
3、的计数单位是( ),它含有( )个这样的计数单位。
4、58厘米=( )米
540克=( )千克
7元8角3分=( )元
9吨40千克=( )吨
5、小数相邻两个单位之间的进率是( )。
6、千克、1000克、吨、1千克10克按从大到小的顺序排列是
( )﹥( )﹥( )﹥( )。
7、在○里填上<、>、=。
○
○
○
米○362厘米
284克○千克
米○532厘米
8、不改变大小,写成三位小数是( )。
9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。
10、□5.□5,使这个数最小是( ),使这个数最大是( )。
(二)火眼金睛辨对错。(10分)
1、与大小相同,计数单位也相同。 ( )
2、小数点的后边添上0或去掉0,小数大小不变。 ( )
3、时=4时40分。 ( )
4、整数加法的运算定律同样适用于小数加法。 ( )
5、和之间只有一个小数。 ( )
(三)选择。 (10分)
1、比10少( )
A、
B、
C、9
2、由2、4、5三个数字组成的最大的两位小数是( )
A、
B、
C、
3、大于小于的小数有( )个
A、9
B、10
C、无数
4、这个数( )位上的零可以去掉。
A、百
B、十
C、百分
5、小红在计算小数减法时,将减数错看成38,得108,那么正确的结果是( )
A、
B、
C、
(四)计算。(32分)
1、口算:(10分)
=
+=
=
+=
+=
+=
=
+11=
=
=
2、列竖式计算:(6分)
+
3、脱式计算,能简算的就简算:(6分)
(+)
+
4、列式计算。(10分)
(1)一个数比与的和多,这个数是多少?
(2)从里减去与的和,差是多少?
(五)解决问题:(18分)
1、五月份某运输公司一队运货吨,二队运货吨,三队比二队多运货吨,三个队五月份共运货多少吨?(4分)
2、妈妈买鞋用去元,买袜子用去元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)
3、光明小学四二班向灾区的小朋友捐款情况如下表
小组: 第一小组、第二小组、第三小组
钱数(元): 、比第一小组少、比第二小组多
(1)第三小组捐款多少元?(2分)
(2)三个小组一共捐款多少元?(3分)
(3)请你提出一个数学问题?并解答。(3分)
(六)智力大比拼(5分)
一桶油连桶重千克,用去一半后连桶重千克,这桶油重多少千克?桶重多少千克?
小数的意义教案8
教学内容:教科书第50—51页的内容
学习目标:
1、知识目标:使学生了解小数的产生,理解小数的意义,掌握小数的计数单位及单位间的进率。
2、能力目标:使学生学会用小数正确表示图中阴影部分。
3、思想教育目标:培养学生的观察能力、抽象概括能力、动手操作能力。
学情分析:通过测量,当学生不能用整数表示的时候,需要一个新的知识即“小数”来表示,引出小数,然后根据米尺直观图引出十分之几、百分之几、千分之几的数都可用小数表示,从而概括出小数的意义。
教学重点:小数的意义。
教学难点:理解和概括小数的意义。
教学准备:米尺多媒体
教学过程:
一、操作引入
教师指着手中的米尺问:米尺有什么作用?当学生回答后。老师说现在咱们就用它来测量黑板的长有几米。
当老师测量三次后,指着剩下的部分问:剩下的部分还够不够1米?如果用米作单位还能用整米数来表示吗?
学生回答:不能。
师问:那用什么数来表示?
生答:可用小数来表示。
师说:对,可用小数表示,这种情况在日常生活中经长遇到。例如:在测量人的身高、物体的长度时经常遇到得不到整米数,这时咱们就用小数来表示。什么数是小数呢?这节课咱们就来学习这一内容。(板书课题:小数的意义)
二、教学小数的意义。
1、认识一、两位小数
出示例1主题图让生观察(1)师问:从图上看把1米平均分成几份?(生答:分成了10份),每份长多少分米?(生答:每份长1分米),1分米是1米的几分之几?(生答:是1米的十分之一),是几分之几米?(生答:是十分之一米),写成小数是多少米?(生答:0.1米)
用同样的方法引导学生把3分米写成0.3米。
教师结合学生的口答板书如下:
1分米→1/10米→0.1米。
3分米→3/10米→0.3米。
师问:分母是10的分数可以写成几位小数?一位小数可表示成几分之几的数?0.1表示几分之几?0.3表示几分之几?
(2)师问:把1米平均分成100份,每份长是多少厘米?1厘米是几分之几米?写成小数是多少米?
用同样的方法引导学生把7厘米、13厘米分别写成0.7米、0.13米
教师结合学生的回答板书如下:
1厘米→1/100米 →0.01米。
7厘米→7/100米→0.07米。
13厘米→13/100米→0.13米。
师问:从上面看分母是100的分数可以写成几位小数?两位小数表示几分之几的数?0.07表示几分之几?0.53表示几分之几?
2、认识三位小数
师问:若把1厘米平均分成10份,照这样分,可以把1米平均分成多少份?每1份是多少?1毫米是几分之几米?写成小数是多少米?8毫米是几分之几米?写成小数是多少米?13毫米是几分之几米?写成小数是多少米?
师问:从上面看分母是1000的分数可以写成几位小数?三位小数表示几分之几的数?0.013表示几分之几?
师结合学生的回答板书如下
1毫米→1/1000米→0.001米。
8毫米→8/1000米→0.008米。
13毫米→13/1000米→0.013米。
师说:若把1毫米平均分成10份,其中的一份或几份可用分母是10000的分数来表示,写成小数就是四位小数。同样我们也可以得到五位小数等。
3、抽象、概括小数的意义。
教师指着上面板书讲解:从上面可以看出,把1米平均分成10份,其中的1份或几份就可以用分母是10的分数来表示。它的单位是十分之一。再把1分米平均分成10份,也就是把1米分成了100份,其中的一份或几份就可以用分母是100的分数来表示。它的单位是百分之一。再把1厘米平均分成10份,也就是把1米分成了1000份,其中的1份或几份就可用分母是1000的分数来表示。它的单位是千分之一。等等
师问:1/10里面有几个1/100?1/100里面有几个1/1000?在这些分数中相邻两个单位间的进率是多少?”(10)“整数相邻两个单位间的进率是多少?”(10)
师述:因为整数和分数相邻两个单位间的进率都是10,因此这些分数可以仿照整数的写法,写在整数个位的右面,用一个圆点隔开,用来表示十分之几、百分之几、千分之几……的数,这样的数就叫小数。
一位小数表示十分之几,它的单位就是1/10,写作0.1;两位小数表示百分之几,它的单位就是1/100,写作0.01;三位小数表示千分之几,它的单位就是1/1000,写作0.001;
(三)课堂练习
1、做教科书第51页的例1及“做一做”的题。
让学生直接填在书上后订正。老师可强调做题时要看一看小数的`单位和要求的单位是否与一致。
2、做教科书55页练习九的第1题
师让生直接做在书上,订正时让生说一说各是怎样想的。
3、做教科书55页练习九的第2题
师让生直接做在书上后订正。
4、练习九的第3题,通过填空的形式,加深学生对小数计数单位的认识。
5、练习九的第4题,通过手势比划用小数表示的长度,加深学生对小数十几意义的理解,同时进一步巩固长度单位的表象。
6、练习九的第5题,让学生写出各数中不同数位上的2表示的意思,让学生熟练掌握小数的各个数位及其技术单位,体会位值的含义。
(四)课堂小结
这节课你学习了那些内容?什么是小数?小数的计数单位有哪些?
三、板书设计:
小数的产生和意义
1分米→1/10米→0.1米。
3分米→3/10米→0.3米。
1厘米→1/100米 →0.01米。
7厘米→7/100米→0.07米。
13厘米→13/100米→0.13米。
1毫米→1/1000米→0.001米。
8毫米→8/1000米→0.008米。
13毫米→13/1000米→0.013米。
小数的意义教案9
学习内容:
小数的意义和产生,课本32-33页内容。
学习目标:
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
学习重难点:
小数的意义和计算单位及进率
学习过程:
课前谈话
孩子们们,平时喜欢猜谜语吗?(喜欢)
老师这里有一个谜语,大家想猜一猜吗?(可以)
请竖起你的小耳朵,认真听,看谁能猜中?
生来公平,拿在手中,要问长短,它最分明。打一度量器具。
生猜尺子。
师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!
咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!
一、教学小数的产生:
首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--
课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!
师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子
师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。
师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。
教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。
在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。
点击出示“你知道吗?”课件展示小数的历史。
这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。
设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。
二、探究小数的意义:
1、认识一位小数
师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。
师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书
师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书
师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书
师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。
师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。
师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?
生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。
生2:我发现,分母是10的分数可以写成一位小数。
师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的`分数。
设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。
2、认识两位小数
师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?
师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,
找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01
师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!
6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?
师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?
生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。
设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。
3、认识三位小数
同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)
师:孩子,那这样的12份呢?师板书。123份呢?师板书。
师:指板书,从这里你们又发现了什么?
生1:我发现分母是1000的分数可以写成三位小数。
生2:三位小数表示千分之几。
师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:请同学们想一想四位小数表示什么?五位小数呢?
生:四位小数表示万分之几,五位小数表示十万分之几。
师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?
生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......
设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!
4、学习小数单位
孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;
那么两位小数的计数单位是多少呢?请思考!
师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。
师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。
师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,
师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。
5、学习单位进率
以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?
那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.
三:巩固练习
学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。
1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。
2、做一做,填空。
0.3里面有()个0.1
0.09里面有()个0.01。
0.35里面有()个0.01.
0.006里面有()个0.001。
0.136里面有()个0.001.
4个()是0.004.
3、练一练
四、课堂总结
同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?
同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!
小数的意义教案10
教学内容:
教材32页内容。
教学目标:
1.让学生通过动手操作理解小数的意义。
2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率.
3.培养学生的观察、分析、推理能力.
教学重、难点:
理解小数的意义。
教学准备:
每个学生空白正方形、平均分成了十份的正方形和平均分成了一百份的正方形纸各一张。
教学方法:
引导操作、观察分析、推理归纳。
教学过程:
一、引入课题
1.三年级的时候我们认识了小数,同学们都记得吧?小数与我的生活息息相关,随处可见,请同学们说说生活中的小数。(课件出示)
师:像这样的小数,还有很多,观察可以分类吗?
小数点后面有一个数字叫一位小数,小数点后面有两个数字叫两位小数,小数点后面有三个数字叫三位小数。
同学们,你们说了这么多,老师说几个,你们愿意吗?
师:板书:0.1 0.01 0.001
这里的0.1、0.01、0.001表示什么意思,他们之间的进率又是多少?引出课题《小数的意义》
二、探究意义
(一)教学0.1
1.如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。请将你心目中的0.1在这张纸上用颜色涂出来。(电脑演示正方形纸、1)
2.(展示、汇报)说说你是怎么表示出0.1的`。小结:要想准确地表示出0.1,我们应该先把这个正方形平均分成十份,再涂出其中的一份,就是0.1。还可以用什么数来表示?
3.取出一张平均分成了十份的正方形,准确地表示出0.1。
4.请涂出其中的3份,涂色部分用小数怎样表示?用分数表示是( ),0.3里面有多少个0.1,空白部分呢?(用小数表示,用分数表示)
5.投影:阴影部分用小数怎样表示?有多少个0.1,空白部分呢?
观察得出:一位小数就表示十分之几(板书)
6.想一想,1里面有( )个0.1。
(二)教学0.01
1.回顾一下,刚才我们是怎样得到0.1的?
2.你能在纸上表示出0.01吗?请你在格字图上表示出来(生取出平均分成一百份的正方形纸片)。说说你是怎么表示的?空白的部分呢?(电脑演示过程)
3.请看老师这张图片,你想到了什么小数?
4.看到0.23,你还想到了什么小数。
5.请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?
6.观察得出:两位小数就表示百分之几(板书)
(三)教学0.001
通过0.1,0.01的教学,推理得出0.001的意义。
请你观察前两组的数,你有什么新的发现?(一位小数、十分之几,两位小数、百分之几,得出:三位小数、千分之几等等)。
三、提炼小数意义
1.小结:像这些用来表示十分之几、百分之几、千分之几……的数,我们把它叫做小数。
2.师:其中的一份,如十分之一、百分之一、千分之一,我们把它叫做计数单位,也可以写作0.1、0.01、0.001等等。如0.3的计数单位是0.1,它有3个0.1。0.25的计数单位有( ),它有( )个0.01。
3、电脑出示练习题。
四、小结。
五、布置作业。
小数的意义教案11
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。
(2)1里面有( )个0.1和( )个0.01。
(3)0.52是由( )个0.1和( )个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )
(2)1毫米写成小数是0.01米。 ( )
第三层练习: 猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的.例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
小数的意义教案12
教学目标
1.使学生理解小数降法的意义,理解小数除以整数的算理,并能够正确计算.
2.提高学生迁移的能力.
3.培养学生合作探究的意识.
教学重点
理解小数除法的意义、掌握小数除以整数的计算方法.
教学难点
理解小数除以整数中“商与被除数小数点对齐”的道理.
教学过程
复习铺垫
(一)填空
1.0.32里面含有32个( )
2.1.2里面含有12个( )
3.0.25里面含有( )个百分之一
4.2.4里面含有( )十分之一
5.8里面含有( )十分之一
(二)列竖式计算2145÷15
二、指导探究
(一)理解小数除法的意义.
1.(课件演示:小数除法的意义)
板书课题:小数除法的意义
2.练习:(继续演示课件:小数除法的意义)
(二)除数是整数的小数除法.
1.(课件演示:除数是整数的小数除法)
2.练习
68.8÷4 85.44÷16
三、质疑小结
(一)教师提问
1.商的小数点与被除数的小数点为什么要对齐?
2.今天学习的除法与过去学习的"除法有什么不同?它与整数除法有什么联系?
将课题补充完整:除数是整数的小数除法
(二)组织学生对今天所学的知识质题答疑.
四、反馈练习
(一)列竖式计算(分组完成)
42.84÷7 67.5÷15 289.8÷18 79.2÷6
(二)列式计算.
1.两个数的积是201.6,一个因数是72,另一个因数是多少?
2.把86.4平均分成24份,每份是多少?
3.64.6是17的多少倍?
(三)应用题
一台拖拉机5小时耕3.55公顷地,平均每小时耕多少公顷?
五、课后作业
计算下面各题
42.21÷18 6.6÷4 37.5÷6 15.36÷12
小数的意义教案13
教材位置
人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。
教学目的
1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。
2、培养学生的迁移、类推能力。
3、渗透数学“来源于生活,又运用于生活”。
教具准备
多媒体课件。
学具准备
草稿纸若干
教学重点
相同数位对齐
教学难点
小数点对齐
教学方法
探究式学习法
学情分析
学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。
学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。
整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。
学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。
教学过程
一、复习。
1、谁的竖式最漂亮,计算更准确。
4235+5478 3251+438
7621+37543 4320+317
小组内完成后,讨论下列问题。
1列竖式时要注意什么?怎样列竖式更快捷?
2计算时要注意什么?
2、整数加法的意义是什么?它的计算法则是什么?
二、激趣导入。
1、提问:夏天到了,你最喜欢吃什么水果?
2、听故事,做数学。
明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?
3、抽一生列式板演,全班齐练。
4、继续听,继续算。
后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?
你还会求出他们一共重多少千克吗?
5、揭示课题:
小数加法的意义和计算法则
三、新授。
1、小数加法的意义。
同整数加法一样,都是把两个数合并成一个数的运算。
2、小数加法的计算法则。
刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:
(1)小数与整数比较,有什么特征?
复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。
为小数加法的意义和法则的类推作理论铺垫。
设问起疑,引起学生的兴趣,提高学生的注意力。
体现数学来源于生活,生活中到处存在数学问题。
进一步复习巩固单位换算的知识,为引出课题作准备。
类比推理的"运用,训练学生知识迁移能力。
(2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的
目的?
(3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?
3、指导看书P111。
4、试练。
完成P111做一做并回答问题。
四、延伸拓展。
1、你会用两种方法计算吗?
1元8角7分+3角2分
7角6分+3元4角4分
2、听故事,列算式:
小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?
五、巩固训练。
4235+5748 37251+438
4.235+5.748 3.7251+4.38
42.35+5.748 37.251+4.38
4.235+57.48 372.51+4.38
六、板书设计。
小数加法的意义和计算法则
3 7 3 5克 3. 7 3 5千克
+ 4 0 7 5克 + 4. 0 7 5千克
7 8 1 07. 8 1 0千克
7810克=7.81千克 3.735+4.075=7.81(千克)
在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。
初步学会对加法法则的运用。
加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。
训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。
加深对计算法则的理解,能运用法则准确计算。
小数的意义教案14
一、再现旧知,回顾整理
课件出示:请把下列各数分类。相信你一定很棒。
0 7.523 6.8 69 101 1.25 384 0.001
教师根据学生口答板书:
整数: 0 69 101 384
小数:7.523 6.8 1.25 0.001
教师谈话:今天这节课我们重点复习小数的有关知识。
二、小组交流,自我梳理。
回想一下,你学过小数的哪些知识?与之相应的整数之间有什么联系?并请举例说明。
学生分小组讨论交流。
教师在学生整理知识时要参与其中,给予必要的方法指导,引导学生相互学习。
三、全班交流,构建成网。
1、班内交流,根据学生交流教师相机整理板书:
整数 小数
意义
(0和自然数的统称…… )←----------→(表示一个数的…… )
计数单位
(……千、百、十、个)←------------→(十分之一、百分之一……)
读写法
(从高位…… )←------------→(整数部分……)
比较大小
(先比较最高位……)←------------→(先比较整数部分……)
运算定律
(a+b=b+a…… )←------------→(a+b=b+a…… )
加减法
(相同数位对齐……)←------------→ (小数点对齐……)
(后来板书)教师小结。
2、教师谈话:小数意义与整数有着这样密切的联系,那么小数的加减法与整数有什么样的联系呢?
①课件出示:用竖式计算
2.85+1.08 2.7+1.85 21.09—4.89 13—8.87
独立计算,班内交流,交流时让学生说一说计算小数加减法要注意什么?(完成上面的板书)
②课件出示:先认真分析每道题目的数据特征,然后独立计算,交流时说一说为什么这样算。
12.25+36+7.75 13.05+12.38—4.05
5.6—0.71—0.29 19.65—(3.98+6.65)
四、练习应用,巩固提高。
(一) 填空
1、由7个0.1、3个0.001和5个1组成的数是( ),读作( )。
2、一个数缩小100倍是0.8,这个数是( )
3、将下列各数按顺序排列。
①0.58 0.85 0.085 0.058 0.8 0.805
( )<( )<( ) <( )<( )<( )
②0.91米 1.0米 10.1米 87厘米 0.69米 9分米
( )>( )> ( ) >( )>( )>( )
4、把一个4位小数保留三位小数后是5.690,这个小数最小是( ),最大是( )。
5、96.4的小数点向左移动一位,再向右移动三位,结果是( )
(二)火眼金睛辨对错。
1、4.60和4.6大小相等,精确度也相等。( )
2、小数都比整数小。( )
3、10个百分之一是一个千分之一。( )
4、0.9595保留三位小数是0.960。( )
5、把0.96的小数点去掉,原数就扩大了1000倍。( )
(三)选一选。
1、把48.5 的`小数点移到最高位数字的左边,这个数缩小到它的( )
①1/10②1/100③1/1000
2、下列各数中去掉“0”而大小不变的是( )
① 2430 ②2.043 ③2.430
3、6.5时是6时( )分
① 5 ②50 ③30
4、大于0.2而小于0.3的小数有( )
①只有0.29 ②没有 ③无数个
5、一个数十位、十分位和千分位上都是8, 其余各位上都是0,这个数写作( )
① 18.808 ②80.808 ③8.088
(四)动脑思考。
□0.□9,在□里填数,使其符合下列要求。
①使这个数最大,这个数是( )
②使这个数最小,这个数是( )
③使这个数最接近31,这个数是( )
板书设计 :
小数的意义和性质
整数: 0 69 101 384
小数:7.523 6.8 1.25 0.001
课后反思:
小数的意义教案15
一、设疑激趣
师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?
生:小数,从大屏幕上。
师:小数的意义就是小数表示什么?那你知道吗?
生:不知道。
师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?
生:遇见过。
师:在哪遇见过?
生1:在计算器上计算有余数的除法时出现了小数。
生2:去超市买东西时会遇见小数。(师跟进说标价是小数)
生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)
【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】
二、探究新知
1、小数的产生
师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?
生:(异口同声地回答)60厘米。
师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?
生:一百分之六十。
师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?
生:0.60。
师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?
生:9.58秒。
师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。
出示口算:
10÷10= 1÷10=
100÷10= 1÷100=
1000÷10= 1÷1000=
【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】
生: 0,赶紧改成1。
师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。
师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?
生:1里面有多少个十。
师:还可以用那句话来说?
生:把1平均分成10份,每份是几?都说是十分之一。
师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)
师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。
【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】
2、教学小数的意义
师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?
0.85 9.58 38.2 0.6 39.4 98.5
生:0.85 9.58是一类,其余是一类。
师:能不能说说你的分类理由?
生:后面是两位、一位。
师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?
生:三位小数,四位小数,五位小数……
师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。
【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】
【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】
教师出示:把 1米平均分成10份。
师:把1米平均分成10份,每一份是多长?
生:10厘米。
1分米。
师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?
生:一百分之一。
生:十分之一。
师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?
师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)
师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)
擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。
师:你发现分数与小数的联系了吗?
分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。
师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】
(2)认识两位小数
师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?
生:是一百分之一米。
师:还可以怎样表示呢?
生:0.01米,1厘米。(补充板书)
师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。
【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】
交流自己写的:
师:你写的是多少?
生1: 7厘米,是7/100米,0.07米。
师:你能猜一猜两位小数与什么样的分数有关系吗?
(指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)
生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。
引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。
师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。
(3)认识三位小数
出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。
两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道
三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。
四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。
师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)
1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )
【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】
(4)抽象、概括小数的意义
师:小数是什么?
补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。
师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?
生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。
师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?
生:个、十、百、千、万……
师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。
3、小数单位间的进率
师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)
师:(把图继续分成100份)发生了怎样的"变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。
【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】
三、巩固练习
师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)
1、下面括号里能填几。
0.1米里有( )个0.01米,0.01米里面有( )个0.001米。
得出:相邻两个计数单位之间的进率是10。
师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。
【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】
2、(1)用合适的数表示图中的涂色部分。
(2)用合适的数表示图中的空白部分。
3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)
4、找朋友。
四、课堂总结
师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?
生:每相邻的计数单位之间的进率都是十。
生:小数就是分数。
生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。
五、你知道吗
了解小数的起源、发展史。