快好知 kuaihz

“猜你喜欢”是怎么猜中你心思的?

(文 /Joseph A. Konstan & John Riedl)如今,到网上购物的人已经习惯了收到系统为他们做出的个性化推荐。Netflix 会推荐你可能会喜欢看的视频。TiVo 会自动把节目录下来,如果你感兴趣就可以看。Pandora 会通过预测我们想要听什么歌曲从而生成个性化的音乐流。

所 有这些推荐结果都来自于各式各样的推荐系统。它们依靠计算机算法运行,根据顾客的浏览、搜索、下单和喜好,为顾客选择他们可能会喜欢、有可能会购买的商 品,从而为消费者服务。推荐系统的设计初衷是帮助在线零售商提高销售额,现在这是一块儿规模巨大且不断增长的业务。与此同时,推荐系统的开发也已经从上世 纪 90 年代中期只有几十个人研究,发展到了今天拥有数百名研究人员,分别供职于各高校、大型在线零售商和数十家专注于这类系统的其他企业。

这 些年来,推荐系统有了相当的进展。开始时它们还相对较为粗糙,往往对行为做出不准确的预测;但随着更多的和不同类型的网站用户数据变得可用,推荐系统得以 将创新算法应用于这些数据之上,它们迅速得到了改善。今天,推荐系统都是些极其复杂和精专的系统,常常看起来比你自己还要了解你。同时,推荐系统正在向零 售网站以外的领域拓展:大学用它们来引导学生选课,移动电话公司靠它们来预测哪些用户有可能转投另一家供应商,会议主办方也测试过用它们来分配论文给审稿 专家。

我 们两人从推荐系统的早期开始便一直在开发和研究它们,最初是以学术研究者的身份,参与 GroupLens 计划(GroupLens Project)。1992 年起,GroupLens 通过对美国兴趣论坛网站 Usenet 讨论区里的消息进行排序,将用户指向他们可能会感兴趣、但自己尚未发现的话题线索。几年以后,我们成立了 Net Perceptions,这是一家推荐算法公司,在互联网第一次热潮期间(1997 年 – 2000 年),一直处于业界领先地位。有鉴于此,虽然这些公司极少公开谈论他们的推荐系统是如何运作的,我们的经验使我们能够深入了解亚马逊和其他在线零售商幕后 的情景。(在本文中,我们的分析是在观察和推理的基础上得出的,不包含任何内部消息)。

下面就是我们所看到的。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:猜中  猜中词条  心思  心思词条  喜欢  喜欢词条  怎么  怎么词条  
热点时事

 这部民法典送你了!

十三届全国人大三次会议5月28日表决通过了《中华人民共和国民法典》,国家主席习**签署第45号主席令予以公布,新华社受权全文播发这部法律。民法典共7编、1260...(展开)