快好知 kuaihz

R语言对回归模型进行协方差分析

原文链接:http://tecdat.cn/?p=9529

目录

怎么做测试

协方差分析

拟合线的简单图解

模型的p值和R平方

检查模型的假设

具有三类和II型平方和的协方差示例分析

协方差分析

拟合线的简单图解

组合模型的p值和R平方

检查模型的假设

怎么做测试

具有两个类别和II型平方和的协方差示例的分析

本示例使用II型平方和 。参数估计值在R中的计算方式不同, 

Data = read.table(textConnection(Input),header=TRUE)

plot(x = Data$Temp, y = Data$Pulse, col = Data$Species, pch = 16, xlab = "Temperature", ylab = "Pulse")

legend("bottomright", legend = levels(Data$Species), col = 1:2, cex = 1, pch = 16)

协方差分析

Anova Table (Type II tests)

Sum Sq Df F value Pr(>F)

Temp 4376.1 1 1388.839 < 2.2e-16 ***

Species 598.0 1 189.789 9.907e-14 ***

Temp:Species 4.3 1 1.357 0.2542

### Interaction is not significant, so the slope across groups

### is not different.

model.2 = lm (Pulse ~ Temp + Species, data = Data)

library(car)

Anova(model.2, type="II")

Anova Table (Type II tests)

Sum Sq Df F value Pr(>F)

Temp 4376.1 1 1371.4 < 2.2e-16 ***

Species 598.0 1 187.4 6.272e-14 ***

### The category variable (Species) is significant,

### so the intercepts among groups are different

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.21091 2.55094 -2.827 0.00858 **

Temp 3.60275 0.09729 37.032 < 2e-16 ***

Speciesniv -10.06529 0.73526 -13.689 6.27e-14 ***

### but the calculated results will be identical.

### The slope estimate is the same.

### The intercept for species 1 (ex) is (intercept).

### The intercept for species 2 (niv) is (intercept) + Speciesniv.

### This is determined from the contrast coding of the Species

### variable shown below, and the fact that Speciesniv is shown in

### coefficient table above.

niv

ex 0

niv 1

拟合线的简单图解

plot(x = Data$Temp, y = Data$Pulse, col = Data$Species, pch = 16, xlab = "Temperature", ylab = "Pulse")

 

模型的p值和R平方

Multiple R-squared: 0.9896, Adjusted R-squared: 0.9888

F-statistic: 1331 on 2 and 28 DF, p-value: < 2.2e-16

检查模型的假设

 

线性模型中残差的直方图。这些残差的分布应近似正态。

 

残差与预测值的关系图。残差应无偏且均等。 

### additional model checking plots with: plot(model.2)### alternative: library(FSA); residPlot(model.2)

具有三类和II型平方和的协方差示例分析

本示例使用II型平方和,并考虑具有三个组的情况。 

### --------------------------------------------------------------### Analysis of covariance, hypothetical data### --------------------------------------------------------------

Data = read.table(textConnection(Input),header=TRUE)

plot(x = Data$Temp, y = Data$Pulse, col = Data$Species, pch = 16, xlab = "Temperature", ylab = "Pulse")

legend("bottomright", legend = levels(Data$Species), col = 1:3, cex = 1, pch = 16)

协方差分析

options(contrasts = c("contr.treatment", "contr.poly")) ### These are the default contrasts in R

Anova(model.1, type="II")

Sum Sq Df F value Pr(>F)

Temp 7026.0 1 2452.4187<2e-16 ***

Species 7835.7 2 1367.5377<2e-16 ***

Temp:Species 5.2 2 0.9126 0.4093

### Interaction is not significant, so the slope among groups

### is not different.

Anova(model.2, type="II")

Sum Sq Df F value Pr(>F)

Temp 7026.0 1 2462.2 < 2.2e-16 ***

Species 7835.7 2 1373.0 < 2.2e-16 ***

Residuals 125.6 44

### The category variable (Species) is significant,

### so the intercepts among groups are different

summary(model.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.35729 1.90713 -3.333 0.00175 **

Temp 3.56961 0.07194 49.621 < 2e-16 ***

Speciesfake 19.81429 0.66333 29.871 < 2e-16 ***

Speciesniv -10.18571 0.66333 -15.355 < 2e-16 ***

### The slope estimate is the Temp coefficient.

### The intercept for species 1 (ex) is (intercept).

### The intercept for species 2 (fake) is (intercept) + Speciesfake.

### The intercept for species 3 (niv) is (intercept) + Speciesniv.

### This is determined from the contrast coding of the Species

### variable shown below.

contrasts(Data$Species)

fake niv

ex 0 0

fake 1 0

niv 0 1

拟合线的简单图解

 

组合模型的p值和R平方

Multiple R-squared: 0.9919, Adjusted R-squared: 0.9913

F-statistic: 1791 on 3 and 44 DF, p-value: < 2.2e-16

检查模型的假设

hist(residuals(model.2), col="darkgray")

 

线性模型中残差的直方图。这些残差的分布应近似正态。

plot(fitted(model.2), residuals(model.2))

 

残差与预测值的关系图。残差应无偏且均等。 

### additional model checking plots with: plot(model.2)### alternative: library(FSA); residPlot(model.2)

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:协方差  协方差词条  模型  模型词条  回归  回归词条  语言  语言词条  进行  进行词条  
综合数码问答

 如何在Mac上使用uTorren...

所谓BT下载,简单来说就是在用户群之间分享文件,而不是从任何服务器下载。文件从分发者(也称为做种者)传输给发出请求的客户端(也称为下载者或用户群)。下载µtor...(展开)

综合数码问答

 如何提高网络下载速度

加速DNS服务器提高你的种子文件下载速度升级你的软件调整你的硬件其他提高下载速度的办法参考你还在为缓慢的下载速度感到困扰吗?有没有想过如何显著提高你的网络下载速...(展开)