绝对数字陷阱也叫大小数字的陷阱,是统计推理中用绝对数字构制的陷阱。在论证中为了需要任意操纵数字,使用庞大的数字可以让人相信某个事实;使用微小的数字可以让人觉得,某事微不足道。但有可能由这些大、小数字得出的结论有些是荒唐至极的,也许是说话人有意地隐瞒了某些重要信息。绝对数难以反映对象的相对变化,遇到绝对数时请拷问:说话人为什么要使用这些数字,他用百分比是不是更能说明问题?
例1: 某校今年本科上线人数达500人,比去年上线人数多了50人,所以,某校今年高考可以说是喜获丰收。
分析: 这则论证的谬误在于没有考虑考生的总人数是否增长。
例2: 郑兵的孩子即将上高中,郑兵发现,在当地中学,学生与老师的比例低的学校,学生的高考成绩普遍都比较好,郑兵因此决定,让他的孩子选择学生总人数最少的学校就读。
分析: 郑兵的想法是选择学生与老师的比例低的学校,但当他选择学校的时候只选择学生总人数最少的学校。可见,郑兵是把相对比例(学生与老师之比)和绝对数(学生人数)弄混淆了,也就是他的决定忽略了:一个学生总人数少的学校,如果老师人数也相应少,则学生与老师的比例不一定低。
例3: 消防队员的工作并不比其他工作更危险。过去5年中,我市消防队员因工受伤的只有4人,而电工因工受伤的有8人,钳工有11人,汽车司机就更多了。
分析: 从绝对数字上看,电工、钳工、汽车司机因工受伤的人数确实比消防队员多。但这绝对说明不了消防队员的工作不比其他工作更危险。谁知道该市的电工比消防队员多多少倍,钳工和汽车司机的数量又分别比消防队员的数量多多少倍?如果用相对数字来比较的话,消防队员因工受伤的百分比可能要比电工的要高出好多倍。