快好知 kuaihz

高中函数单调性的教学设计

高中数学函数教学设计

推荐度:

《对数函数》教学设计

推荐度:

高中物理教学设计

推荐度:

高中数学教学设计

推荐度:

《反比例函数的图像》教学反思

推荐度:

相关推荐

高中函数单调性的教学设计

教学目标

1、会用等比数列的通项公式和前n项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。

2、通过公式的灵活运用,进一步渗透分类讨论的思想、等价转化的思想。

函数单调

知识目标:初步理解增函数、减函数函数单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。:

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调

教 具: 多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为2006年黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。

结论:(1)y轴左侧:逐渐下降; y轴右侧:逐渐上升;

(2)左侧 y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的"。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

⑴若当<时,都有f()<f(),则f(x)在这个区间上是增函数(如图3);

⑵若当<时,都有f()>f(),则f(x) 在这个区间上是减函数(如图4)。

单调性与单调区间

函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

当x1<x2时,都有f(x1)<f(x2) y随x增大而增大;当x1f(x2)y随x增大而减小。

几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数

判断2:定义在R上的函数 f (x)满足 f (2)> f(1),则函数 f (x)在R上是增函数。(×)

函数单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

例1 、如图,是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,以及在每一单调区间上,函数是增函数还减函数

注意:

(1)函数单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2 判断函数 f (x) =3x+2 在R上是增函数还是减函数?并证明你的结论。

引导学生进行分析证明思路,同时展示证明过程:

证明:设任意的,且,则

由,得

于是

即。

所以,在R上是增函数

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤:

①任意取值:即设x1、x2是该区间内的任意两个值,且x1<x2

②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形

③判断定号:确定f(x1)-f(x2)的符号

④得出结论:根据定义作出结论(若差0,则为增函数;若差0,则为减函数

即“任意取值——作差变形——判断定号——得出结论”

例3、 证明函数在(0,+)上是减函数.

证明:设,且,则

由,得

又由,得,

于是即。

即。

所以,函数在区间上是单调函数

问题1 :在上是什么函数?(减函数)

问题2 :能否说函数在定义域上是减函数? (学生讨论得出)

四、课堂练习,知识巩固

课本59页 练习:第1、3、4题。

五、课堂小结,知识梳理

1、增、减函数的定义。

函数单调性是对定义域的某个区间而言的,反映的是在这一区间上函数值随自变量变化的性质。

2、函数单调性的判断方法:(1)利用图象观察;(2)利用定义证明:

证明的步骤:任意取值——作差变形——判断符号——得出结论。

六、布置作业,教学延伸

课本60页 习题2.3 :第4、5、6题。

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:高中函数单调性的教学设计  教学设计  教学设计词条  单调  单调词条  函数  函数词条  高中  高中词条  
教学设计

 可贵的沉默教学设计

《沉默的大多数》读后感推荐度:《钓鱼的启示》教学设计推荐度:呼风唤雨的世纪教学设计推荐度:蓝色的树叶教学设计推荐度:《梦想的力量》教学设计推荐度:相关推荐可贵的...(展开)

教学设计教学设计

 教学设计方案

《詹天佑》课时教学设计方案推荐度:信息化教学设计方案推荐度:翻转课堂教学设计方案推荐度:教师节班会教学设计方案推荐度:幼儿园教学活动设计方案推荐度:相关推荐精选...(展开)