快好知 kuaihz

分数的基本性质教案

分数的基本性质教案

推荐度:

分数的基本性质教案

推荐度:

分数的基本性质教案

推荐度:

相关推荐

分数的基本性质教案范文汇编8篇

作为一名辛苦耕耘的教育工作者,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?下面是小编帮大家整理的分数的基本性质教案8篇,欢迎大家借鉴与参考,希望对大家有所帮助。

分数的基本性质教案 篇1

教学目的

1.使学生理解和掌握分数的基本性质.

2.培养学生观察、思考、动手操作和自学能力.

教学过程

一、导入新课.

故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

二、新课.

1.实际操作列等式证实两组分数,每组分数大小相等.

(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

.(板书: )

(2)教师提问:比较一下阴影部分的大小,结果怎样?

阴影部分相等,说明这三个分数怎样?

(随着学生回答老师将三个分数用“=”连接)

(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

(4)教师提问:这三个分数在数轴上所表示的`长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接)

2.初步概括分数基本性质.

(1)观察两个等式,每个等式的三个分数什么变了?什么没变?

(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

板书:

(3)谁能用一句话把这个变化规律叙述出来?

板书:分数的分子、分母都乘上同一个数,分数大小不变.

(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

板书:

(5)问:谁能用一句话把这个变化规律叙述出来?

谁能用一句话把这两个变化规律叙述出来?

(板书:或除以)

3.完整分数基本性质.

填空:

教师追问:第三题( )里可以填多少个数?第4题呢?

为什么3、4题( )里可以填无数个数?

( )里填任何数都行吗?哪个数不行?(板书:零除外)

这里为什么必须“零除外”?

教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

(板书课题:分数基本性质)

4.深入理解分数基本性质.

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.

1.用直线把相等的分数连接起来.

2.把下列分数按要求分类.

和 相等的分数

和 相等的分数

3.判断下列各题的对错,并说明理由.

4.填空并说出理由.

5.集体练习.

四、照应课前谈话.

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.

这节课你有什么收获?

六、布置作业.

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

分数的基本性质教案 篇2

教学内容:教科书第60~61页,例1、例2、

练一练,练习十一第1~3题。

教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学重点:让学生在探索中理解分数的基本性质。

教学过程:

一、导入新课

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的.数?

(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

三、巩固练习

1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

2、完成第2题。独立完成,交流想法。

四、课题总结

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

分数的基本性质教案 篇3

这节课,戴老师教师教态自然、语言清晰、数学语言表述准确。着重培养了学生通过动手操作的活动来让学生主动探究分数的基本性质,掌握分数的基本性质在生活中的实际应用,同时培养了学生积极参与,团结合作,主动探索,引导观察鈫捬罢夜媛桑发现规律,我觉得这是一堂充满生命活力的课堂,能促进学生全面发展的课堂,体现新课标理念的课堂,从中我得到了一些鲜活的经验和有益的启示。具体概括以下几点?

一、教学思路清晰,目标明确,重难点突出。

教师根据教学内容,因材施教地制定了教学思路。这节课以鈥湸瓷枨榫车既胄驴沃傅嘉探索,整个教学思路清晰。这节课戴老师突出培养学生动手操作,主动探究的训练,通过用三张同样大的长形纸折一张的、涂色等活动来探索分数分子、分母的变化规律,从而让学生发现规律,突出重难点的内容,整个教学做到详略得当,重难点把握准确。这样设计符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的`学习能力?

二、创设情境,重视操作活动,发挥主体作用。

老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

三、练习设计具有层次性,开放性。

由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

分数的基本性质教案 篇4

教学内容:省编义务教材第十册第91—93页例1、例2。

教学目标:

1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

课前准备:

课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

教学过程:

1.创设情境,作好铺垫

出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

为什么你会猜是一道除法算式?(分数与除法有密切的关系)

除法与分数有什么样的关系?

(黑板上出示:被除数÷除数=)

根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

2、迁移猜想,引疑激思

分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

3、自主探究,验证猜想

也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

(1)初步验证

①出示:探究报告单,让学生读要求:

a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数

b.选择合理的方法验证所前后两个分数是否相等。

c.填写好探究报告单。

选择探究的

分 数

分子和分母同时乘以或除以

一个相同的数

得到的

分 数

选择的分数与得到的分数是否相等

相等( ) 不相等( )

猜想是否成立

成立( ) 不成立( )

选择的分数与得到的分数是否相等相等()不相等()

猜想是否成立成立()不成立()

*:验证方法可用折纸、画线段图、计算、实物……

②学生合作进行探究。

③全班交流:

a、同桌一起上来,拿好探究报告单及验证材料等。

b、两人合作,一人讲解、一人验证演示。

c、得到结论:

(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

4、议论争辩,顿悟创新

读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

5、训练技能,激励发展

刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

(1)练习明目的

根据分数的基本性质,填空。

1/2=()/8=5/()=()/6=7/()

采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

(2)慧眼辩是非

(3)变式练思维

把下面每组中的异分母分数化成同分母分数

A、3/4,4/7B、5/6,4/9C、3/5,5/8

分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

(4)竞赛促智慧

①在1—9九个数字中任选一些数字组成大小相等的分数

可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

并让学生继续往下说,从而得出:任何一个分数与之相等的"分数有无数个。

②出示:1/a=7/b(说明:a、b都不是0。)

抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6、回顾,掌握方法

今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

学生可能会回答:

生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

生2:我们是通过猜测的方法学的。

生3:我们还用验证的方法学习。

……

结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

分数的基本性质教案 篇5

一、 教材

根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:

1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数

2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:

一是基于对课程标准的理解。

《义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。

二是基于对教材的认识。

分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

三是基于对学情的认识。

作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。

据此,

我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的.基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。

二、教法

课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。

三、说学法

学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

四、说教学过程

本着让学生

“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。

环节一:联系旧知,质疑引思。

“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。

环节二:操作体验,概括规律

1.观察发现,提出猜想。

通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想

2.举例操作,验证猜想。

课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。

3.概括性质,深化理解

通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。

4.运用规律,完成例2

尝试运用发现的规律,解决问题。

环节三:知识应用,巩固提高

在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。

环节四:回顾总结,完善认知

通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。

有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。

分数的基本性质教案 篇6

教学前的思考:

一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

教学设计:

一 故事提供“猜想”素材:Flash动画故事引入.(教师出示课件)

师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

生:高兴!

师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)

师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

生1:胖和尚吃的多。

生2:矮和尚吃的多。

……

师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)

二 用事实“验证”,完整性质。

1.实际操作列等式证实分数大小相等。

师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)

师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

生:阴影部分的大小相等。

师:阴影部分相等说明这三个分数怎样?

生:三个分数相等。

(随着学生的回答,老师将板书的三个分数用“=”连接。)

2.观察课件证实分数大小相等。

师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

师:这三个分数所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接。)

3.初步概括分数基本性质.

师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)

师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)

生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)

师:你们观察的真仔细!请大家给点掌声好吗?

(学生掌声起,激情高长,课堂教学充满活力。)

师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?

(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)

4、完整分数基本性质:

师:(出示课件)请同学们填空:

(教师请一位会操作鼠标的同学在课件中填空)

师:第3题( )里可以填多少个数?第4题呢?

生:可以填无数个。

师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)

生:不能填零。

师:为什么不能填零?

生:分数的"分母不能为零。

(教师对学生的回答进行评价)

师:所以我们总结的这条规律必须加上一个条件“零除外”

(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)

师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)

三 深入理解分数基本性质

1.学生自学,深入理解性质。

师:请同学们把书翻到108页,自读分数的基本性质。

师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?

生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)

2.学生独立完成做一做1。(完成后小组内互相评价)

3.找出与

相等的分数

(教师出示课件,请一位同学在课件中连线,教师进行评价)

4.请同学们自学并完成例2、(教师巡视,个别进行辅导)

……

四 照应Flash动画故事,渗透“形式与实质”的辩证观点

教师在黑板上出示自制的三个同样大小的圆饼

师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)

生:三个和沿吃的一样多。

师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

……

五 课堂小结:这节课你有什么收获?(学生板书课题)

教学后的感悟:

1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

分数的基本性质教案 篇7

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5.组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的.分子和分母都乘或除以相同的数,分数的大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10○()/24○()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6.通过练习在此性质中哪些是关键词?

7.巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇8

教学目的

1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

2.培养学生观察、分析、思考和抽象、概括的能力.

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

教学过程

一、谈话.

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数

整数的互化方法.今天我们继续学习分数的有关知识.

二、导入新课.

(一)教学例1.

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

1.分别出示每一个圆,让学生说出表示阴影部分的分数

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

(2)阴影部分的`大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

4.观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化?

( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

(2)观察

(二)教学例2.

出示例2:比较 的大小.

1.出示图:我们在三条同样的数轴上分别表示这三个分数

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

(1)这三个分数从形式上看不同,但是它们实质上又都相等.

(教师板书: )

(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质.

1.观察前面两道例题,你们从中发现了什么变化规律?

分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

(板书:“基本性质”)

4.谁再说一遍什么叫分数的基本性质?

教师板书字母公式:

四、应用分数基本性质解决实际问题.

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

2.分数基本性质的应用:

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

决一些有关分数的问题.

3.教学例3.

例3 把 和 化成分母是12而大小不变的分数

板书:

教师提问:

(1) ?为什么?依据什么道理?

( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?

( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?

(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五、课堂练习.

1.把下面各分数化成分母是60,而大小不变的分数

2.把下面的分数化成分子是1,而大小不变的分数

3.在( )里填上适当的数.

4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

5.请同学们想出与 相等的分数

规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

六、课堂总结.

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

七、课后作业.

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:分数的基本性质教案  教案  教案词条  分数  分数词条  性质  性质词条  基本  基本词条  
教案教案

 行路难教案

《行路难》的教案推荐度:相关推荐行路难教案作为一名专为他人授业解惑的人民教师,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么...(展开)

教案教案

 初中语文雨说教案

《雨霖铃》教案推荐度:初中语文优秀教案推荐度:初中语文教案设计推荐度:幼儿园小班说课教案推荐度:说好普通话主题班会教案推荐度:相关推荐初中语文雨说教案作为一位杰...(展开)

教案教案

 小班儿歌教案

小班中秋节儿歌教案推荐度:小班儿歌教案推荐度:小班儿歌教案推荐度:相关推荐小班儿歌教案范文集合五篇作为一名教师,时常需要编写教案,教案是保证教学取得成功、提高教...(展开)