推荐度:
推荐度:
推荐度:
相关推荐
在教学工作者开展教学活动前,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的三角形内角和教案9篇,欢迎大家分享。
【设计理念】
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
【学情分析】
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
【学习目标】
1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。
2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。
3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
【教学重点】
探索和发现“三角形的内角和是180°”。
【教学难点】
运用三角形的内角和解决实际问题。
【教学准备】
教师:多媒体、剪好的不同类型的三角形。
学生:量角器、剪刀、剪好的不同类型的三角形。
【教学过程】
一、创设情景,引出问题
1.猜谜语。
师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。
师:打一几何图形。猜猜看!
学生猜谜语。
根据学生的回答,出示谜底。
师:真是三角形,同学们的反应真快!
2.复习三角形的内容。
其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?
指名学生回答。
(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)
3.引出课题。
师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。
(板书课题:三角形的内角和)
二、探究新知
1.讨论、交流验证知识的方法。
师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)
学生汇报:①用量的.方法;②用拼的方法;③用折的方法...
2.操作验证。
师:同学们的点子还真多!现在请同学们拿出准备好的三角形,
选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!
3.学生汇报。
师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?
学生汇报,教师适时板书。
①用量的方法:
指名学生汇报度量的结果,教师板书。(指两名学生汇报)
教师白板演示测量方法,并计算和板书出结果。
教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)
师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?
②用拼的方法
a.学生汇报拼的方法并上台演示。
我这里也有一个钝角三角形,请两名同学上台演示。
b.请大家四人小组合作,用他的方法验证其它三角形。
c.展示学生作品。
d.师展示。
师:我们用量、拼得到了180度,还有什么方法?
③用折的方法
师:还想向同学们请同学们看一看他是怎么折的(演示)。
师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?
教师根据学生板书:(任意)三角形的内角和是180度。
④数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。
三、巩固练习
数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!
1.出示:我是小判官(对的打“√”错的“×”。)
强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?
教师:为什么不是360°?学生回答。
2.接下来我要奖励你们一个游戏:《帮角找朋友》
3.求未知角的度数。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
①出示第一个三角形,学生尝试独立完成,教师巡视。
教师:刚才,我们利用了三角形的什么?
②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。
a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。
教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。
四、拓展延伸
师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?
接着让学生尝试求5边形和6边形的内角和。
小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°
五、课堂总结。
师:这节课你有什么收获?
学生自由发言。
师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。
同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。
六、作业布置
完成教材练习十六的第1、3题。
七、板书设计:
( 任意)三角形的内角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的.内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类
每个内角
的度数
三个内
角的和
锐角三角形
65°
46°
68°
179°
钝角三角形
110°
25°
46°
181°
等腰三角形
70°
55°
55°
180°
等边三角形
60°
60°
60°
180°
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的"相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.
三、教学过程分析
本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1) (2) (3) (4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
① 用严谨的证明来论证三角形内 角和定理.
② 看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
DAB=B,EAC=C(两直线平行,内错角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
ECD(两直线平行,同位角相等)
ACE(两直线平行,内错角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.
第三环节:反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,则△ABC中B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度数;
(b)若BD是AC边上的高,求 DBC的度数?
活动目的:
通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结
活动内容:
① 证明三角形内角和定理有哪几种方法?
② 辅助线的作法技巧.
③ 三 角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.
课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题
四、教学反思
三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2) 充分展示学生的个性,体现学生是学习的主人这一主题。
(3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的.答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()
(2)一个三角形至少有两个角是锐角。()
(4)直角三角形的两个锐角和等于90°。()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结
通过这节课的学习,你有哪些收获?
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】
让学生整体感知三角形内角和的知识,这样的`教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。
猜测
【设计意图】
引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】
利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】
小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗
3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】
习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的.计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的"内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的"行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
学习目标:
(1) 知识与技能 :
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习
二.回顾课本
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的`语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:
(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测:
略
六、布置作业