快好知 kuaihz

平行四边形教案

平行四边形教案

推荐度:

平行四边形教案

推荐度:

实用的平行四边形教案

推荐度:

相关推荐

实用的平行四边形教案合集十篇

作为一名优秀的教育工作者,就难以避免地要准备教案,借助教案可以更好地组织教学活动。如何把教案做到重点突出呢?下面是小编收集整理的平行四边形教案10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行四边形教案 篇1

一、教学内容:P72

二、教学目标:

1、引导学生直观地认识平行四边形

2、培养学生动手操作和实践能力。

三、教学准备:

长方形框架、七巧板

四、教学过程:

(一)复习导入

(二)探索新知

1、做一做

(1)教师演示:出示长方形框架

这是什么图形,然后拉动,变成新形状。提示学生认真观察。

(2)学生动手操作,做一做。

(3)认识平行四边形

A、认识平行四边形实物(观察新图形)

B、认识平行四边形平面图

2、想一想

平行四边形与长方形的联系:对边相等,四个角不是直角,有的是锐角,有的是直角。

3、说一说

说一说平时见到的`平行四边形

4、画一画

5、拼一拼(用七巧板)

(三)全课

今天我们学习了什么知识,用什么方法认识平行四边形

(四)作业

在现实中寻找平行四边形

平行四边形教案 篇2

一、内容和内容解析

1.内容

平行四边形对角线的性质.

2.内容解析

这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.

教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

二、目标和目标解析

1.目标

(1)探究并掌握平行四边形对角线互相平分的性质.

(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

2.目标解析

达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的"关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

三、教学问题诊断分析

本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

四、教学过程设计

引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

1. 引入要素 探究性质

问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.

问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

你能证明上述猜想吗?

教师操作投影仪,提出下面问题:

图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

学生合作学习,交流自己的思路,并讨论不同的验证思路.

教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

师生归纳整理:

定理:平行四边形的对角线互相平分.

我们证明了平行四边形具有以下性质:

(1)平行四边形的对边相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分.

设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

2.例题解析 应用所学

问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

3.课堂练习,巩固深化

(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

4.反思与小结

(1)我们学习了平行四边形的哪些性质?

(2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

5.布置作业

教科书P49页习题18.1 第3题;

教科书第51页第14题.

平行四边形教案 篇3

导学目标:

1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。

3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

导学重点:平行四边形的判别方法。

导学难点:根据判别方法进行有关的`应用

导学准备:多媒体课件

导学过程:

一、快速反应

1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________

2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________

3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

结论:______________________________________

符号表示:

4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?

在图中,AC=BD=16, AB=CD=EF=15,

CE=DF=9。

图中有哪些互相平行的线段?

二、议一议

1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

三、平行四边形的判别方法:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两条对角线互相平分的四边形是平行四边形

四、练一练:

1.判断下列说法是否正确

(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

(2)两组对角都相等的四边形是平行四边形 ( )

(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?

3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。

五、师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)平行四边形判定的应用

六、课后巩固:课本P107习题4.4第1题和第2题

七、课后反思:

平行四边形教案 篇4

【教材分析】

本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

【教学目标】

知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

【学情分析】

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

【教学重点】

掌握平行四边形面积计算公式。

【教学难点】

平行四边形面积计算公式的推导过程。

【教具】

两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

【教学过程】

一、创设情境,引入课题。

1、游戏:小小魔术师。教师出示不规则图形。

(1)师:你能直接计算出这个图形的面积吗?

(2)师:你能计算出这个图形的面积吗?说一说用什么方法?

(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

(设计思路:温故是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

二、激趣引思,导入新课。

师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

生1:我想知道要花多少钱才可以做成。

生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

生3:我想知道这块胶合板的面积有多大。

师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究平行四边形的面积。(板书课题:平行四边行的面积)

(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

三、动手操作,探究发现。

1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

(1)这个平行四边形的面积是多少平方厘米?

(2)它的底是多少厘米?

(3)它的高是多少厘米?

(4)这个平行四边形的面积跟它的高与底有什么关系?

(5)请同学们猜一猜:怎样计算平行四边形的面积?

2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

生:不方便。

师:既然不方便,我们能不能用更方便的方法来解决呢?

小组交流,学生讨论,发表意见。

生:用剪和拼的方法。

师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

师:再请一个同学展示一下,他的剪法有什么不一样吗?

(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

小组讨论:

⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?

⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?

⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?

师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)

师:长方形的面积=长宽,那么平行四边形的面积怎样求?

生:平行四边形的面积=底高(板书)

师:同意吗?谁能讲一讲,为什么平行四边形的面积=底高?结合刚才一剪一拼的过程说说。(生叙述方法)

教师小结方法指名让生叙述。

师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

师:现在我们可以确定当初的猜想谁是正确的?

(设计思路:让学生对平行四边形面积的计算方法提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

四、实践应用,巩固提高。

师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

教师板书:54=20(平方米)

出示例1 (同桌讨论,独立完成,最后全班交流。)

教师板书:S=ah=64=24(平方米)

师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

五、分层练习, 强化应用。

1、填空。

(1)把一个平行四边形转化成一个长方形,它的面积与原来的.平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

(2)0.85公顷=( )平方0.56平方千米=( )公顷

2、计算下面各个平行四边形的面积。

(1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

3、解决问题。

(1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

(2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

六、总结升华,拓展延伸。

1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

(设计思路:通过说一说,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

2、课后练习

(1)、练习十五第1题,第2题。(任选一题)

(2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

(设计思路:分层次布置作业,让学生根据自己的能力,适当选择作业。这样做,一来可以提高学生的学习兴趣,二来体现了让学生在数学上得到不同的发展。)

【教学反思】:

一、调动了学生学习的积极性和主动性

这节课我使用了多媒体教学课件,通过图文并茂,把静止的问题活动话,激发了学生学习的积极性和主动性,节省了课堂教学的时间。学生将两个不规则的图形转化成了长方形求出了不规则图形的面积,接着出示一个平行四边形,如何求平行四边形的面积呢?这样引入新课,调动了学生学习的兴趣。

二、创造出宽松和谐的环境,引导学生探究。

课堂上为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证。

这节课组织学生进行自主探究、合作交流是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。

平行四边形教案 篇5

教学目的

1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形

2.理解并掌握用二组对边分别相等的四边形是平行四 边形

3.能运这两种方法来证明一个四边形是平行四边形

教学重点和难点

重点:平行四边形的判定定理;

难点:掌握平行四边形的性 质和判定的区别及熟练应用。

教学过程

(一)复习提问:

1. 什么 叫平行四边形平行四边形有什么性质?(学生口答,教师板书)

2. 将 以上的`性质定理,分别用命题形式 叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

(二)新课

一.平行四边形的判定:

方法一(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边 分别互相平行,

则可判定这个四边形是一个平行四边形

活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

方法二:两组对边分别相等的四边形是平行四边形

设问:这个命题的前提和结论是什么?

已知:四边形ABCD中,AB=CD,AD=BC

求 证:四边ABCD是平行四边形

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

板书证明过程。

小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

判定一:二组对边分别相等的四边形是平行四边形

∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

练习:课本P103练习题第1题。

例题讲解:

例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

求证:

分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

求证:四边 形EFGH是平行四边形

平行四边形教案 篇6

教学目标

1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。

教学重点与难点

重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。

教学准备

方格纸、直尺、图钉、剪刀。

教学过程

一、提问。

1.平行四边形对边( ),对角( ),对角线( )。

2.( )是平行四边形

二、探索,概括。

1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的"四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的过程,能否断定这个四边形是平行四边形?

2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:

一组对边平行且相等的四边形是平行四边形

(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)

三、应用举例。

例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形

四、巩固练习。

如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形

五、拓展延伸。

在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?

六、看谁做的既快又正确?

七、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?

八、布置作业。

补充习题

平行四边形教案 篇7

目标:

1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。

3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

教学准备:多媒体、平行四边形纸片. 剪刀、三角尺

一、创设情境

同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?

师:你们准备怎样解决呢?

生:分别算出长方形和平行四边形的面积就行了。

师:谁来说怎样计算长方形的面积?

生:长方形的面积等于长乘宽。

师:怎样列式?(10×6=60平方米)

师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?

生:-------

师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的面积)

二、探究新知

1、学生尝试解决,

师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。

学生活动,独立尝试解决。

教师巡视,

2、反馈学生尝试计算结果。

师:同学们有结果了吗?

学生汇报结果。

师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)

到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。

3、学生汇报验证过程。

师:请你上台把这过程演示一遍。

学生演示。

师:我想问一下,你这一剪是随便剪的吗?

生:不是,是沿高剪的。

师:哦,这位同学是这样剪的。

师:不错,谁还有不同的剪法?

学生汇报。

师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。

师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?

师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?

生:形状变了,面积没有变。

师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的.面积相等。)

师:非常正确!

师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?

师演示教具。

生:转化后的长方形,长与原来的平行四边形的底相等,宽与原来平行四边形的高相等。

师:说得真好。那现在平行四边形的面积你们会算了吗?

生:平行四边形的面积等于底乘高。

师:不错。如果用S表示平行四边形的面积,用a 表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?

学生说完,师完成板书:长方形的面积=长×宽

平行四边形的面积=底×高

用字母表示:S=a×h=ah

师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲

请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形

师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?

4、解决问题

师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?

生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。

师:谢谢你们为小熊和小兔解决了交换菜地的问题。

师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。

出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

学生尝试练习,生上台板演。

师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

生:底和高。

师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。

三、巩固练习

1、计算下列图形的面积。

师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。

生上台板演。

师:同学们,算完了吗?我们来看看这位同学做对了没有?

师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。

师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?

2、课本82页第2题。

师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比

学生上台展示。,

3、考考你。

师:比完了,接下来老师又要出题目考你们了。

4、小小设计师。

师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)

四、小结

师:今天这节课的知识你们是怎样学会的呢?

师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。

平行四边形教案 篇8

一、教学目标:

1.使学生掌握平行四边形的意义及特征,了解它的特性。

2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。

3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。

二、教学重点:平行四边形的意义。

三、教学难点:抽象概括平行四边形的意义。

四、教学过程:

(一)、老师出示一个长方形框架.

1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?

(这个图形不是长方形了,因为它的四个角不是直角)

我们把这样的图形叫做平行四边形.在黑板右上角贴出一个平行四边形

2.请同学们观察:黑板上还有哪些平行四边形

(分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”)

问:同学们平时见过平行四边形吗?请举例来说.(有一种防盗网上的图形、篱笆上的图形,有的编织图案)

3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)

(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)

今天,我们又认识了一个图形——平行四边形

(二)通过活动,再次感知平行四边形

1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉)

师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。

学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选?

最后小组合作用图钉固定出长方形框。

围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作)

在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。)

2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。

3. 分组操作、研究平行四边形的特征。

(1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比)

(2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的过程,小组讨论平行四边形4条边和 4个角的特点。

(3)分组交流,教师小结。

4. 辨认平行四边形

完成课本练习三十九第2题,指生订正并说出理由。

(三)巩固练习

1、判断题:

(1)长方形、正方形和平行四边形都是四边形.( )

(2)四个角都是直角的四边形一定是正方形.( )

(3)一个四边形,它的四条边相等,这个四边形一定是正方形.( )

(4)对边相等的四边形都是长方形.( )

(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( )

2.思考题:

有两个大小一样的长方形,长都是4分米,宽都是2分米.

(1)把这两个长方形拼成一个正方形,你是怎样拼的?

(2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的?

(四)全课总结

通过今天的学习你有什么收获?谈一谈。

教学反思:

在整节课的设计中,我注重将游戏、活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。

在教学设计中,我注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的空章。然后通过学生的动手操作,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的"欲望。通过"变魔术"引出平行四边形,激发了学生的观察兴趣,从而使学生认识平行四边形的特性,在轻松学习中学习数学。

教学中感到不足的是设计的练习不很多,题的类型不够新颖,在练习的设计中,应能引起学生的兴趣,使学生乐于探究。

教学反思:

学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、验证、推理与交流等数学活动。因此,本节课我让学生把自己制作的长方形框架拿出来拉动后可以得到一个平行四边形引入新课,激起探究的兴趣。在探究平行四边形的特征时,引导学生小组讨论:一个平行四边形和一个三角形的框架,比较一下,它们之间有什么不同。再引导学生观察平行四边形,归纳、概括平行四边形的特征。让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征。学生学得非常积极主动:数学教学活动要帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学思想和方法,因此在数平行四边形时,引导学生有序地进行观察,主动探究规律,渗透有序思维的方法。整节课从实际出发运用现代教学手段,突破了教学的难点。反思整个教学过程,我认为教学的益处在于有效地引导了学生在活动中享受到学习的乐趣,体验到合作、交流的成功,从而大大提高了教学效果。 不足:课中的练习量还是不够,可以多做些练习突出平行四边形的特征。

平行四边形教案 篇9

教学目标:

1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3、对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

理解平行四边形面积公式的推导过程.

学具准备:

每个学生准备一个平行四边形

教学过程:

一、导入新课。

1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

2、好,下面谁来说一说你找到了哪些学过的图形?

3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的"计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=ah

说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的填空。

7、验证公式

学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

三、检测导结

1、学生自学例1后,教师根据学生提出的问题讲解。

2、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

3、做书上82页2题。

4、小结

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

5、作业

练习十五第1题。

附:板书设计

平行四边形面积的计算

长方形的面积=长宽

平行四边形的面积=底高

S=ah

S=ah或S=ah

平行四边形教案 篇10

教学内容:人教版第九册 64 – 67页

说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

教学重点:平行四边形面积的推导过程。

本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

学法:1、自主学习法

2、小组合作探究学习法。

教学程序:

一、创设问题情景, 为新课作铺垫。

请同学们帮李师傅的.一个忙,

求出下面的面积,你是怎样想的?3厘米

5厘米

二、突出学生主体地位,发展学生的创新思维。

首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想

三、小组合作,培养学生的合作精神。

小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

四例题独立完成,体现学生自己解决问题的能力。

例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

板书设计:

长方形面积==长乘宽

平行四边形面积=底乘高

s= a h

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:平行四边形教案  平行四边形  平行四边形词条  教案  教案词条  平行四边形教案词条  
教案教案

 美术教案

美术教案推荐度:幼儿美术教案推荐度:小学美术教案推荐度:小学的美术教案推荐度:高中美术教案推荐度:相关推荐实用的美术教案范文集合7篇作为一名为他人授业解惑的教育...(展开)

教案教案

 报任安书教案

报任安书教案推荐度:报任安书教案推荐度:实用的报任安书教案推荐度:相关推荐报任安书教案范文集合6篇作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是保...(展开)

教案教案

 小班美术教案

幼儿园小班美术教案推荐度:幼儿小班创意美术教案推荐度:小班美术《糖葫芦》教案推荐度:小班美术《春天的树》教案推荐度:小班美术活动优秀教案推荐度:相关推荐【精华】...(展开)