快好知 kuaihz

平行四边形教案

平行四边形教案

推荐度:

实用的平行四边形教案

推荐度:

平行四边形教案

推荐度:

相关推荐

关于平行四边形教案锦集九篇

作为一名优秀的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。快来参考教案是怎么写的吧!下面是小编精心整理的平行四边形教案9篇,仅供参考,欢迎大家阅读。

平行四边形教案 篇1

1、本单元教材内容

例1.认识同一平面内两条直线的特殊位置关系:平行和垂直。

例2.学习画垂线,认识点到直线的距离。

例3.学习画平行线,理解平行线之间的距离处处相等。

例1.把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

例2.认识平行四边形的`不稳定性,认识平行四边形的底和高,学习画高,梯形的各部分名称。

2、重难点、关键

重点:垂直与平行的概念;平行四边形和梯形的特征。

难点:画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高。

关键:加强作图的训练和指导,重视作图能力的培养。

3、教学目标

(1)使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

(2)使学生掌握平行四边形和梯形的特征。

(3)通过多种活动使学生逐步形成空间观念,进一步体会几何图形在日常生活中的广泛应用。

4、课时划分

6课时

(1)垂直与平行 3课时左右

(2)平行四边形和梯形 3课时左右

平行四边形教案 篇2

教学目标

1.通过生活情景与实践操作,直观认识平行四边形

2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。

3.体会平行四边形与生活的密切联系。

教学重难点

通过生活情景与实践操作,直观认识平行四边形

教学准备

教具:活动长方形框架点子图。

学具:七巧板。课时

安排1

教学过程

一、利用学具逐步探究

1.拉一拉

发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?

生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形

教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形

长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。

(1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。

(2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。

(设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)

2.猜一猜:[课件出示如果这些图形都是可活动的,估计哪些能拉成平行四边形,哪些不能拉成平行四边形,为什么?

让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形

请在导入时得到学具奖励的"学生上台利用学具拉一拉,验证大家的猜测)

3.认一认:

让学生判断大屏幕上的图形是平形四边形吗?[课件出示]

学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)

4.找一找:

给出一幅画,让学生从这幅画中找到平行四边形

课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形

师:除此之外,你还能从生活中找到它吗?

二、动手操作拓展延伸:

1.画一画:

(1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。

(2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。

2.拼一拼:

用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的方法最巧妙。

(1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。

(2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。

三、课堂

1.这节课你有什么收获?

2.师:只要注意积累,你们的知识会越来越多!

平行四边形教案 篇3

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形

教学过程:

一、导入新课

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的"长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=ah

说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的填空。

7、验证公式

学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

三、检测导结

1、学生自学例1后,教师根据学生提出的问题讲解。

2、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

3、做书上82页2题。

4、小结

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

5、作业

练习十五第1题。

附:板书设计

平行四边形面积的计算

长方形的面积=长宽 平行四边形的面积=底高

S=ah S=ah或S=ah

平行四边形教案 篇4

一、学习目标

1、经历探索多项式与多项式相乘的运算法则的过程,发展有条理的思考及语言表达能力。

2、 会进行简单的多项式与多项式的乘法运算

二、学习过程

(一)自学导航

1、创设情境

某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米,用两种方法表示这块林区现在的面积。

这块林区现在的长为 米,宽为 米。因而面积为________米2。

还可以把这块林地分为四小块,它们的面积分别为 米2, 米2,_______米2, 米2。故这块地的面积为 。

由于这两个算式表示的都是同一块地的面积,则有 =

如果把(m+n)看作一个整体,你还能用别的方法得到这个等式吗?

2、概括:

多项式乘以多项式的法则:

3、计算

(1) (2)

4、练一练

(1)

(二)合作攻关

1、某酒店的厨房进行改造,在厨房的中间设计一个准备台,要求四面的过道宽都为x米,已知厨房的长宽分别为8米和5米,用代数式表示该厨房过道的总面积。

2、解方程

(三)达标训练

1、填空题:

(1) = =

(2) = 。

2、计算

(1) (2)

(3) (4)

(四)提升

1、怎样进行多项式与多项式的乘法运算?

2、若 的乘积中不含 和 项,则a= b=

应用题

第三十五讲 应用题

在本讲中将介绍各类应用题的解法与技巧.

当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点.

应用性问题能引导学生关心生活、关心社会,使学生充分到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.

解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:

在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.

例题求解

一、用数式模型解决应用题

数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.

【例1】(20xx年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。有关数据如下表所示:

景点ABCDE

原价(元)1010152025

现价(元)55152530

平均日人数(千人)11232

(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。问风景区是怎样计算的?

(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。问游客是 怎样计算的?

(3)你认为风景区和游客哪一个的说法较能反映整体实际?

思路点拨 (1)风景区是这样计算的:

调整前的平均价格: ,设整后的平均价格:

∵调整前后的平均价格不变,平均日人数不变.

∴平均日总收入持平.

( 2)游客是这样计算的:

原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)

现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)

∴平均日总收入增加了

(3)游客的说法较能反映整体实际.

二、用方程模型解应用题

研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.

【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln内可以通过800名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.

思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.

(1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:

,解得:

(2)这栋楼最多有学生4×8×4 5=1440(名).

拥挤时5min4道门能通过.

5×2(120+80)(1-20%)=1600(名),

因1600>1440,故建造的4道门符合安全规定.

三、用不等式模型解应用题

现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.

【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A、B两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:一天的发电量)如下表:

日平均风速v(米/秒)v<33≤v<6v≥6

日发电量 (千瓦?时)A型发电机O≥36≥150

B型发电机O≥24≥90

根据上面的数据回答:

(1)若这个发电场购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为 千瓦?时;

(2)已知A型风力发电机每台O.3万元,B型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦?时,请你提供符合条件的购机方案.

根据上面的数据回答:

思路点拨 (1) (100×36+60×150)x=12600x;

(2)设购A型发电机x台,则购B型发电机(10—x)台,

解法一根据题意得:

解得5≤x ≤6.

故可购A型发电机5台,B型发电机5台;或购A型发电机6台,B型发电视4台.

四、用函数知识解决的应用题

函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.

【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:

①买进每份0.20元,卖出每份0.30元;

②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;

③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;

(1)填表:

一个月内每天买进该种晚报的份数100150

当月利润(单位:元)

(2)设每天从报社买进该种晚报x份,120≤x≤200时,月利润为y元,试求出y与x的函数关系式,并求月利润的最大值.

思路点拨(1)填表:

一个月内每天买进该种晚报的份数100150

当月利润(单位:元)300390

(2)由题意可知,一个月内的20天可获利润:

20×=2x(元);其余10天可获利润:

10=240—x(元);

故y=x+240,(120≤x≤200), 当x=200时,月利润y的最大值为440元.

注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x的取值范围.

另外,初三还会提及统计型应用题,几何型应用题.

【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.

(1)求甲、乙两工程队单独完成此项工程所需的天数.

(2)如果请甲工程队施工,公司每日需付费用200 0元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程;B.请乙队单独完成此项工 程; C.请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?

思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时.

(1)设乙工程队单独完成此项工程需x天,根据题意得:

, x=30合题意,

所以,甲工程队单独完成此项工程需用20天,乙队需30天.

(2)各种方案所需的费用分别为:

A.请甲队需20xx×20=40000元;

B.请乙队需1400×30=4200元;

C.请甲、乙两队合作需(20xx+1400)×12=40800元.

所队单独请甲队完成此项工程花钱最少.

【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?

思路点拨 挖掘题目中隐藏条件是关键!

设考察队到 生态区去用了x天,返回用了y天,考察用了z天,则x+y+z=60,

17x-25y=-1,即25y-17x=1. ①

这里x、y是正整数,现设 法求出①的一组合题意的解,然后计算出z的值.

为此,先求出①的一组特殊解(x0,y0),(这里x0,y0可以是负整数).用辗转相除法.

25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.

与①的左端比较可知,x0 =-3,y0=-2.

下面再求出①的合题意的解.

由不定方程的知识可知,①的一切整数解可表示为x=-3+25t,y=-2+17t,

∴ x+y=42t-5,t为整数.按题意0

∴z=60—(x+y)=23.

答:考察队在生态区考察的天数是23天.

注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法.

【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下:

(1)若一次购物少于200元,则不予优惠;

(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;

(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折 优惠.

小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购 买小明分两次购买的同样多的物品,他需付款多少?

思路点拨 应付198元购物款讨论:

第一次付款198元,可是所购物品的实价,未 享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论.

情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 .

又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元).

因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元).

情形2 当198元为购物打九折付的钱时,所购物品的原价为198 ÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元).

综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元

【例8】 (20xx年全国数学竞赛题)某项工程,如果由甲、乙两队承包,2 天完成,需180000元;由乙、丙两队承包,3 天完成,需付150000元;由甲、丙两队承包,2 天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?

思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:

设甲、乙、丙单独承包各需x、y、z天完成.

则 ,解得

再设甲、乙、丙单独工作一天,各需付u、v、w元,

则 ,解得

于是,由甲队单独承包,费用是45500×4=182000 (元).

由乙队单独承包,费用是29500×6= 177000 (元).

而丙队不能在一周内完成.所以由乙队承包费用最少.

学历训练

(A级)

1.(河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?

2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)

3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?

4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?

(提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少)

(B级)

1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机 台.

2.(希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:

购买台数1~5台6~10台11~15台16~20台20台以上

每台价格760元720元680元640元600元

乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折; 每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.

(1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;

(2)现在有A、B、C三个单位,且单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?

3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.

4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问:

(1)扶梯露在外面的部分有多少级?

(2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶?

5.某化肥厂库存三种不同的混合肥,第一种 含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100?(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.

6.(黄冈竞赛题)有麦田5块A、B、C、D、E,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且b < a

多边形的边角与对角线

j.Co M

第十四讲 多边形的边角与对角线

边、角、对角线是多边形中最基本的概念,求多边形的边数 、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.

多边形 的内角和定理反映出一定的规律性:(n-2)×180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360°是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.

将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸 边形的一个顶点引出的对角线把 凸 边形分成 个多角形,凸n边形一共可引出 对角线.

例题求解

【例1】在一个多边形中,除了两个内角外,其余内角之和为20xx°,则这个多边形的边数是 .

(江苏省竞赛题)

思路点拨 设除去的角为°,y°,多边形的边数 为 ,可建立关于x、y的不定方程;又0°

链接 世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的"几何性质,多边形可分成三角形,三角形可以合成其他

一些几何图形.

【例2】 在凸10边形的所有内角中,锐角的个数最多是( )

A.0 B.1 C.3 D.5

(全国初中数学竞赛题)

思路点拨 多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为 外角为钝角的个数的探讨.

【例3】 如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长.

(乌鲁木齐市中考题)

思路点拨 把动手操作与合情想象相结合 ,解题的关键是能注意到重合的边作为四边形对角线有不同情形.

注 教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.

本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.

【例4】 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

(1)请根据下列图形,填写表中空格:

(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?

(3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面 图形?说明你的理由.

(陕西省中考题)

思路点拨 本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性.假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n个内角的和为360°,这样,将问题的讨论转化为求不定方程的正整数解.

【例5】 如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A"B"C"D"E".

(1)图中5块阴影部分即四边形AHA"G、BFB"P、COC"N、DMD"L、EKE"I能拼成一个五边形吗?说明理由.

(2)证明五边形A"B"C"D"E"的周长比五边形ABCD正的周长至少增加25个单位.

(江苏省竞赛题)

思路点拨 (1)5块阴影部分要能拼成一个五边形须满足条件:,A"GB"; B"PC"; C"ND";D"LE";E"IA"三点分别共线;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周长等于A"H+A"G+B"F+B"P+C"O+C"N+D"M+D"L+E"K+E"I,用圆的周长逼近估算.

1.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 ?,周长最小的是 cm.

(选6《荚国中小学数学课程标准》)

2.如图,∠1+∠2+∠3+∠4+∠5+∠6= .

3.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围是 .

4.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:

(1)第4个图案中有白色地面砖 块;

(2)第n个图案中有白色地面砖 块.

(江西省中考题)

5.凸n边形中有且仅有两个内角为钝角,则n的最大值是( )

A.4 B.5 C. 6 D.7

( “希望杯”邀请赛试题)

6.一个凸多边 形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( )

A.9条 B.8条 C.7条 D. 6条

7.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖( )

A.216块 B.288块 C.384块 D.512块

( “希望杯”邀请赛试题)

8.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC和△ACD拼成一个凸四边形ABCD.

(1))画出四边形ABCD;

(2)求出四边形ABCD的对角线BD的长.

(上海市闵行区中考题)

9.如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数.

(北京市竞赛题)

10.如图,在五边形A1A2A3A4A5中,Bl是A1的对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行.

(安徽省中考题)

11.如图,凸四边形有 个;∠A+∠B+∠C+∠D+∠E+∠F+∠G= .

(重庆市竞赛题)

12.如图,延长凸五边形A1A2A3A4A5的各边相交得到5个角,∠B1,∠B2,∠B3,∠B4,∠B5,它们的和等于 ;若延长凸n边形(n≥5)的各边相交,则得到的n个角的和等于 .

( “希望杯”邀请赛试题)

13.设有一个边长为1的正三角形,记作A1(图a),将每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A 2(图b),再将每条边三等分,并重复上述过程,所得到的图形记作A3(图c);再将每条边三 等分,并重复上述过程,所得到的图形记作A4,那么,A4的周长是 ;A4这个多边形的面积是原三角形面积的 倍.

(全国初中数学联赛题)

14.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA—CD=3,则BC+DC= . (北京市竞赛题)

15.在一个n边形中,除了一个内角外,其余(n一1)个内角的和为2750°,则这个内角的度数为( )

A.130° D.140° C .105° D.120°

16.如图,四边形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,则CD的长为( )

A.4 B.4 C.3 D. 3 (江苏省竞赛题)

注 按题中的方法"不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称——雪花曲线或 科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是新兴学科“混沌”的重要分支.

17.如图,设∠CGE=α,则∠A+∠B+∠C+∠D+∠C+∠F=( )

A.360°一α B.270°一αC.180°+α D.2α

(山东省竞赛题)

18.平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.

19.一块地能被n块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需n+76块这样的地砖才能覆盖该块地,已知n及地砖的边长都是整数,求n. (上海市竞赛题)

20.如图,凸八边形ABCDEFGH的8 个内角都相等,边AB、BC、CD、DE、EF、FG的长分别为7,4,2,5,6,2,求该八边形的周长.

21.如图l是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A、B、C、D各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.

如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取多长时,才能实现上述的折叠变化?

(淄博市中考题)

22.一个凸n边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸n边形各个内角的大小,并画出这样的 凸n边形的草图.

图形的平移与旋转

前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科.

几何变换是指把一个几何图形Fl变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换.

如图1,若把平面图形Fl上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换.

平移前后的图形全等,对应线段平行且相等,对应角相等.

如图2,若把平面图Fl绕一定点旋转一个角度得到图形F2,则由Fl到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角.

旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等.

通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决.

注 合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变"而相似变换,只保留线段间的比例关系,而线段本身的大小要改变.

例题求解

【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= .

思路点拨 通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形.

【例2】 如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线 段x、m、n为边长的三角形的形状是( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.随x、m、n的变化而改变

思路点拨 把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、 x、n 集中为△DNB,只需判定△DNB的形状即可.

注 下列情形,常实施旋转变换:

(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;

(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;

(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.

【例3】 如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED?AB=AF?CD>0,求证:该六边形的各角相等.

(全俄数学奥林匹克竞赛题)

思路点拨 设法将复杂的条件BC?FF=ED?AB=AF?CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换.

注 平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决.

【例4】 如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题)

思路点拨 本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中.

注 三角形中的不等关系,涉及到以下基本知识:

(1)两点间线段最短,垂线段最短;

(2)三角形两边之和大于第三边,两边之差小于第三边;

(3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角.

【例5】 如图,等边△ABC的边长为 ,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA、PB的长. (“希望杯”邀请赛试题)

思路点拨 题设条件满足勾股关系PA2+PB2=PC2的三边PA、PB、PC不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关 键.

学历训练

1.如图,P是正方形ABCD内一点,现将△ABP绕点B顾时针方向旋转能与△CBP′重合,若PB=3,则PP′= .

2.如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB .

3.如图,四边形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长为 .

4.如图,把△ABC沿AB边平移到△A"B"C"的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB= ,则此三角形移动的距离AA"是( )

A. B. C.l D. (20xx年荆州市中考题)

5.如图,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点C、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF= S△ABC;④EF=AP.

当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )

A.1个 B.2个 C .3个 D.4个

(20xx年江苏省苏州市中考题)

6.如图,在四边形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCD d=8,则BE的长为( )

A.2 B.3 C . D. (20xx年武汉市选拔赛试题)

7.如图,正方形ABCD和正方形EFGH的边长分别为 和 ,对角线BD、FH都在直线 上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线 上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有变化.

(1)计算:O1D= ,O2F= ;

(2)当中心O2在直线 上平移到两个正方形只有一个公共点时,中心距O1O2= ;

(3)随着中心O2在直线 上平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程). (徐州市中考题)

8.图形的操做过程(本题中四个矩形的水平方向的边长均为a,竖直 方向的边长均为b):

在图a中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B1B2(即阴影部分);

在图b中, 将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B1B2B3(即阴影部分);

(1)在图c中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,,S2= ,S3= ;

(3)联想与探索:

如图d,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.

(20xx年河北省中考题)

9.如图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM.

说明及要求:本题是《几何》第二册几15中第13题,现要求:

(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹).

(2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由.

(3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论.

10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2.

11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是 .

(绍兴市中考题)

12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( )

A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.无法确定

13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( )

A. B. C .5 D.6

(20xx年武汉市选拔赛试题)

14.如图,已知△ABC中,AB=AC,D为AB上一点,E为AC 延长线上一点,BD=CE,连DE,求证:DE>DC.

15.如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满 ,求△ABC的面积.

16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米? (“五羊杯”竞赛题)

17.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于1,将△ABC绕 点O顺时针旋转45°,得△A1BlC1 ,两三角形公共部分为多边形KLMNPQ.

(1)证明:△AKL、△BMN、△CPQ都是等腰直角三角形;

(2)求△ABC与△A1BlC1公共部分的面积. (山东省竞赛题)

18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值.

(2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a.

(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为 时,正n边形的边被纸板覆盖部分 的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由.

平行四边形教案 篇5

一、教学目标:

1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

3.培养学生发现问题、解决问题的能力及逻辑推理能力。

二、重点、难点

1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。

2.难点:运用平行四边形的性质进行有关的论证和计算。

3.难点的突破方法:

本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的.性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。

学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。

讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

平行四边形教案 篇6

教学内容:国标苏教版数学第八册P43-45。

教学目标:

1、同学在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

2、同学在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能丈量或画出平行四边形的高。

3、同学感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。

教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

教学难点:引导同学发现平行四边形的特征。

教学准备:配套多媒体课件。

教学过程:

一、生活导入。

1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入学校,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形

2、你们还能找出我们生活中见过的一些平行四边形吗?同学回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。

3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形

[评:《数学课程规范》指出:“同学的数学学习内容应当是实际的、有意义的、富有挑战性的。”选择同学熟悉和感兴趣的素材,吸引同学的"注意力,激发同学主动参与学习活动的热情,让同学初步感知平行四边形。]

二、探究特点。

1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自身来想方法来制作一个平行四边形呢?你们可以先看一看资料袋中有哪些资料,再独立考虑一下准备怎么做;假如有困难的可以先看看学具袋中的平行四边形再操作。

2、大家已经完成了自身的创作,现在请你们和小组的同学交流一下,说说自身的做法和为什么这样做,然后派代表上来交流。

同学小组交流,教师巡视,并进行一定的辅导。

3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。

(1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?

(2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才干做一个平行四边形

(3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才干得到一个平行四边形

(4)用直尺画一个平行四边形

……

(评:这个个环节的设计,本着同学为主体的思想,敢于放手,让同学的多种感官参与学习活动,让同学在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、同学之间的多向交流,体现那了同学为本的理念。)

4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?

(评:本环节的设计,通过在方格纸上画,让同学再次感知平行四边形的一些特点,为下面的猜测、验证和画高作了铺垫。)

5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么一起特点呢?下面我们一起来研究。

根据你们在制作平行四边形的时候的体会,你们可以猜测一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜测它的特征呢?边?角?)

6、同学小组讨论后提问并板书猜测:

对边可能平行;

对边可能相等;

对角相等;

……

7、你们真行,有了这么多的猜测,那我们能够自身想方法来证明这些猜测是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜测。

同学每小组上台认领一条猜测,同学分组验证猜测。

8、经过同学们的努力,我们已经自身验证了其中一条猜测,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?

9、小组派代表上来交流自身小组的验证方法,其他小组在其完成后进行评价。

(1) 两组对边分别相等:同学介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。

(2) 两组对边分别平行:同学汇报的时候假如不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。

(3) 对角相等:同学说出方法后,教师让同学再自身量一量。

……

最后,教师板书出经过验证特点:

两组对边分别平行并且相等;

对角相等;

内角和是360°

(评:这个环节的设计蕴涵了“猜测-验证-结论”这样一个科学的探究方法。给同学提供了充沛的自制探索的空间,引导同学先猜想特点,再放手让同学自身去验证和交流,使同学在碰撞和交流中最后的出结论。在这个过程中,同学充沛展示了自身的思维过程,在交流中与倾听中把自身的方法与他人的想法进行了比较。)

10、完成“想想做做1”。同学独立完成后说说理由。

三、认识高、底。

1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。

同学自身尝试后交流。

2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。

3、你能画出另一组对边上的高,并量一量吗?同学继续尝试。

完成后,让同学指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。

4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标志。假如有错误,让同学说说错在哪里。

(这个环节的设计,通过同学自身去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,同学学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让同学领悟了高的知识。)

四、练习提高。

1、想想做做1,哪些图形是平行四边形,为什么。

2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

3、想想做做3,用七巧板中的3块拼成一个平行四边形

出示,你能移动其中的一块将它改拼生长方形吗?

4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。

5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。

(评:在巩固练习中,注意通过同学动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,同学容易接受,并且注意了引导同学去自主探索、合作交流。)

五、阅读调查

自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。

六、全课小结

今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?

平行四边形教案 篇7

教学内容

本册教材第37—38页上的内容,完成第37页上的“做一做”。

教学目的

1、使学生初步认识平行四边形,了解平行四边形的特点。

2、通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。

教学重点

探究平行四边形的.特点。

教学难点

让学生动手画、剪平行四边形

教学过程

(一)认识平行四边形

1、出示主题图。

从图中你看到了哪些图形,指给同桌看。

2、出示带有平行四边形的实物图片。

师:它们是正方形吗?是长方形吗?(学生回答后,教师接着问。)

师:它们有几条边?几个角?它们叫什么图形呢?

学生回答后教师说明:这样的图形叫平行四边形

3、感受平行四边形的特点

(1)让学生拿出三条硬纸条,用图钉把它们钉成三角形,然后拉一拉。(学生一边拉一边说自己的感受)

(2)让学生拿出教师给他们准备的四条硬纸条,用图钉把它们钉成一个平行四边形形,然后拉一拉。(学生一边拉一边说自己的感受)

(3)小组讨论操作:怎样才能使平行四边形拉不动呢?

学生汇报时,要说说理由。

(二)掌握平行四边形

1、在钉子板上“钩”。

你认为什么样的图形是平行四边形呢?在钉子板上围围看。(学生动手操作,

然后汇报、展示)

2、在方格纸上“画”。

让学生在方格纸上画出一个平行四边形。(学生动手操作,然后汇报、展示)

3、折一折、剪一剪。

你会剪一个平行四边形吗?(学生动手操作,然后汇报、展示并说说各自不同的剪法。)

4、通过上面的活动,你发现平行四边形是一个什么样的图形?(小组讨论)

(三)巩固平行四边形

1、课堂练习:完成练习九第1—3题。

2、课外练习:完成练习九第5题。

平行四边形教案 篇8

教学内容:人教版第九册 64 – 67页

说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

教学重点:平行四边形面积的推导过程。

本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

学法:1、自主学习法

2、小组合作探究学习法。

教学程序:

一、创设问题情景, 为新课作铺垫。

请同学们帮李师傅的一个忙,

求出下面的面积,你是怎样想的?3厘米

5厘米

二、突出学生主体地位,发展学生的创新思维。

首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的.长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想

三、小组合作,培养学生的合作精神。

小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

四例题独立完成,体现学生自己解决问题的能力。

例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

板书设计:

长方形面积==长乘宽

平行四边形面积=底乘高

s= a h

平行四边形教案 篇9

教学内容:

义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。

教学目标:

1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。

2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。

3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

教学重、难点:

让学生在观察、操作、交流等教学活动中认识平行四边形

教具准备:

一个长方形方框,多媒体课件。

学具准备:

每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。

教学过程:

一、 谈话引入

教师:同学们,在以前的学习中我们已经初步认识了平行四边形。实际上,在我们生活中也经常见到平行四边形。请看大屏幕。

(课件出示主题图)

请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的"平行四边形。)

教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今天这节课老师就和同学们一起来进一步认识平行四边形

板书课题:平行四边形

二、 探究新知

1、认识平行四边形的特征

(1)教师:同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。

(教师出示一个长方形方框)这个图形大家认识吗?(它是长方形)

教师:对!这是一个长方形。老师握着这个长方形方框的两个对角,轻轻地拉一拉。变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形

教师:你们想玩玩这个魔术吗?

(2) 学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。

(3)师:同学们观察老师手里的平行四边形,同桌讨论你们发现了什么?

生1:对边平行

生2:对边相等

同学们真聪明,真能干通过观察发现了这么多!

同学们,这些发现对吗?现在我们来验证我们的发现,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。

汇报结果:对边平行

现在我们再来验证一下对边真的相等吗?应该怎样办呢?

生:测量平行四边形四条边的长度。

师:请拿出你们的直尺测量手中平行四边形四条边的长度。

汇报结果:对边相等

师:同学们,我们现在发现了平行四边形有两个特点,它们是什么呢?

(4)师:我们现在认识了平行四边形,也知道它的对边相等且平行。那么什么是平行四边形呢?

教师通过学生的回答引导出:对边平行的四边形,叫做平行四边形

2、认识平行四边形的高

同学们真能干!这么快就知道了什么叫做平行四边形,现在我们来学习平行四边形另外一个特征。请同学们拿出老师发的平行四边形跟老师做(折高)。

师:打开平行四边形,观察折痕有什么特点(垂直于边)

师:想一想什么叫做平行四边形的高?(从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.)教师:同学们,通过刚才折平行四边形的高,你有什么发现?

学生:我发现平行四边形的高有无数条。

教师:对!平行四边形有无数条高。

第99页第3题,学生独立完成之后全班交流,教师强调底与高的对应性。

师:引导认识底

3、引导学生认识长方形、正方形、平行四边形的关系

(1)完成表格

(2)归纳总结第98页课堂活动第1题

教师:请同学们想一想,到现在为止,我们都学习了哪些四边形?(长方形、正方形、平行四边形……)

教师:它们都有哪些地方一样呢?(它们都是对边相等,对边互相平行……)

教师:平行四边形的这些特征,长方形、正方形都具备。

我们通常说长方形、正方形是特殊的平行四边形

长方形、正方形是特殊的平行四边形平行四边形的对边平行且相等,具有不稳定性。

三、课堂小结

同学们,这节课你学到了哪些知识?能给大家讲讲吗?

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:平行四边形教案  平行四边形  平行四边形词条  教案  教案词条  平行四边形教案词条  
教案教案

 中班教案

中班健康教案推荐度:中班优秀教案推荐度:中班游戏教案推荐度:中班安全教案推荐度:中班剪纸教案推荐度:相关推荐关于中班教案模板汇编五篇在教学工作者实际的教学活动中...(展开)

教案教案

 中班美术教案

《石头画》中班美术教案推荐度:放烟花中班美术教案推荐度:幼儿园中班美术教案推荐度:幼儿园中班美术教案《瓶子》推荐度:清明节主题中班美术教案推荐度:相关推荐【精华...(展开)

教案教案

 美丽的相框教案

美丽的相框教案作为一名教师,常常需要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。快来参考教案是怎么写的吧!下面是小编为大家整理的美丽的相框教案,欢迎阅读,...(展开)