快好知 kuaihz

《比例的意义》教案

《正比例的意义》教案

推荐度:

比例的意义和基本性质教案

推荐度:

《比例的意义》教案

推荐度:

相关推荐

《比例的意义》教案

作为一位优秀的人民教师,就有可能用到教案,借助教案可以更好地组织教学活动。那么应当如何写教案呢?以下是小编精心整理的《比例的意义》教案,欢迎阅读与收藏。

《比例的意义》教案1

教学目标:

1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:CAI课件

教学过程:

一、复习、导入

1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、 课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

二、认识比例的意义

(一)认识意义

1、 指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

(二)练习

1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示:3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的`性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4

=

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、全课总结(略)

《比例的意义》教案2

教学内容:

比例的意义和基本性质。

教学要求:

使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。

教学重点:

理解比例的意义和基本性质。

教学难点:

灵活地判断两个比是否组成比例。

教 具:

投影机等。

教学过程:

一、复习。

1、什么叫做比?什么叫做比值?

2、求出下面各比值,哪些比的比值相等?

12:16 : 4.5:2.7 10:6

二、提示课题,引入新课。

1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

2、引入新课。

三、导演达标。

1、教学比例的意义。

(1)引导学生观察课本的表格后回答:

A、第一次所行驶的路程和时间的比是什么?

B、第二次所行驶的路程和时间的比是什么?

C、这两次比的比值各是什么?它们有什么关系?

板书: 80:2=200:5 或 =

(2)引出比例的意义。

A、表示两个比相等的式子叫做比例。

B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的.?比和比例有什么区别?

C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

D、做一做。(先练习,后讲评)

2、教学比例的基本性质。

(1)看书后回答:

A、什么叫做比例的项?

B、什么叫做比例的外项、内项?

(2)引导学生总结规律?

先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

3、练习:判断下面的哪组比可以组成比例。

6:9和9:12 1.4:2和7:10

四、巩固练习:第一、二题。(指名回答,集体订正)

五、总结:今天我们学习了什么?

比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。

六、作业:第二题。

《比例的意义》教案3

教学内容:

《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

学生分析:

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标:

1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。

2、过程与方法:为学生营造一个经历知识产生过程的情境。

3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。

教学重点:理解反比例的意义。

教学难点:两种相关联的量的变化规律。

教学准备:学生准备:复习正比例关系,预习本节内容。

教师准备:投影片3张,每张有例题一个。

教学过程设计:

一、谈话引入,激发兴趣。

1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。

2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。

二、创设情景引新:

(出示:十二个小方块)

师:同学们,这十二个小方块有几种排法?

(生答后,老师板书下表的排列过程)

每行个数1234612

行数1264321

师:请你观察上表中每行个数与行数成正比例关系吗?为什么?

生:……

师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。

(出示课题:反比例的意义)

三、合作自学探知

1、学习例4。

(1)出示例4。

师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。

A、表中有哪两种量?

B、怎样随着每小时加工的数量变化?

c、每两个相对应的数的乘积各是多少?

学生讨论……

生反馈:……

师:能不能举出三个例子

生:1020=6002030=6003020=600……

师:这里的600是什么数量?你能说出这里的数量关系式吗?

生:……

[板书出示:每小时加工数加工时间=零件总数(一定)]

2、自学例5:

(1)出示例5:

师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?

生:……

师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)

生:……

3、讨论准备题:

(1)请你根据例4的方法,四人小组内说一说。

(2)请你举例说明表中每行个数与行数是什么关系?为什么?

四、比较感知特征

综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?

生:……

五、引导概括意义

1、概括反比例意义。

学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。

师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?

生:……

师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。

学生互相练习……

师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?

生:……

师:例4、例5和准备题中的两种量成不成反比例?为什么?

生:……(学生回答后,老师及时纠正)

师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?

生:……[板书出示y=k(一定)]

2、教学例6。

(1)课件出示例6。

(学生读题、思考)

师:怎样判断两种量成不成反比例?

师:哪位同学说说,每天播种的公顷数和要用的.天数是不是成反比例?为什么?

生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。

六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

[案例分析]:

通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

《比例的意义》教案4

设计说明

本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:

1.重视有效学习情境的创造。

新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。

2.重视引导学生自主探究。

教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的`比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。

3.重视引导学生合作交流。

《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。

课前准备

教师准备 PPT课件

教学过程

⊙渗透情感,导入新课

1.课件出示国旗画面,学生观察,激发爱国情操。

(天安门升国旗仪式、校园升旗仪式、教室场景)

师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?

2.课件出示国旗的长和宽,并提出问题。

天安门升旗仪式上的国旗:长5 m,宽 m。

操场升旗仪式上的国旗:长2.4 m,宽1.6 m。

教室里的国旗:长60 cm,宽40 cm。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?

3.导入新课。

师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。

(板书课题:比例的意义和基本性质)

设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。

⊙合作交流,探究新知

1.教学比例的意义。

(1)自主尝试。

课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。

(2)汇报、交流。

预设

生1:天安门升旗仪式上的国旗。

长∶宽=5∶=

生2:操场升旗仪式上的国旗。

长∶宽=2.4∶1.6=

生3:教室里的国旗。

长∶宽=60∶40=

(3)感知比例的意义。

观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?

预设

生1:可以用等号连接,因为它们的比值相等。

“2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。

生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。

生3:根据比与分数的关系,“2.4∶1.6=60∶40”

也可以写成“=”。

《比例的意义》教案5

教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

1.让学生说说什么是成正比例的量:

2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么?

①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课

教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:

(1)表中有哪两种量?

(2)所需的加工时间怎样随着每小时加工的个数变化?

(3)每两个相对应的数的乘积各是多少?

学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

10 × 60 =600。

30 × 20 =600。

40 × 15 =600,

“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

“这40本是怎么计算出来的`?”(用600÷15)

“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

(2)观察分析表中两种量的变化规律。

让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

15 40

20 30

25 24

一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

1,单价一定.数量和总价。

2,路程一定,速度和时间。。

3,正方形的边长和它的面积。

1.时间一定,工效和工作总量。

二、导入新课

教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

板书课题:正比例和反比例的比较

三、新课

1.教学例7。

出示例7的两个表:

表1 表2

让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

在表l中: 在表2中:

相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

一定。因此,路程和时间 ,路程是一定的。因此,速

成正比例关系。 度和时间成反比例关系

然后提问:

(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

板书:速度×时间=路程

=速度 =速度

教师:当速度一·定时,路程和时间成什么比例关系?

教师:当路程一定时,速度和时间成什么比例关系?

教师:当时间一定时。路程和速度成什么比例关系?

2.比较正比例和反比例关系。

教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。

让学生自己填,并说一说为什么。

2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《比例的意义》教案6

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、教学新课

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论,得出:

(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)

2.教学例2。

出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的`比值一定)

3.概括。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。

4.具体认识。

(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

(2)做练习八第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

5.教学例3。

出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

现在,我们根据上面的判断方法来做一些题。

1.做“练一练”第l题。

指名学生口答,说明理由。可以结合写出数量关系式。

2.做“练一练”第2题。

指名口答,并要求说明理由。

3.做练习八第2题。

小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)

4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业

练习八第3题。

《比例的意义》教案7

学情分析

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点和难点

教学重点:认识反比例关系的意义。

教学难点 :掌握成反比例量的变化规律及其特征。

教学过程一、复习导入

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

点名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的`规律是什么?

(板书:每袋重量和袋数的积一定)

乘积8000是什么数量,这种数量关系用式子怎样表示?

[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?

像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

问:两种相关联的量成不成反比例的关键是什么?

(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

三、巩固练习

1. 做“练一练”第l,2,3,4,5题。

指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

2.拓展应用。

3.综合练习

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

《比例的意义》教案8

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:

认识正比例关系的意义。

教学难点:

掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的"是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4.教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5.完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。

《比例的意义》教案9

教学目标

一、知识目标

1、使学生理解比例的意义和比例的基本性质.

2、认识比例的各部分名称,会组成比例.

二、能力目标

1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

2、培养学生的观察能力和判断能力.

三、情感目标

1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

教学重点

比例的意义和基本性质.

教学难点

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学对象分析

低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

教学策略及教法设计

教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

1.多媒体教学

运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

2.动手操作法

引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的.思维逐渐内化.

教学步骤

一、铺垫孕伏

1、什么叫做比?

2、什么叫做比值?

3、求下面各比的比值:

4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

二、探究新知

(一)比例的意义

例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

时间(时)

2

5

路程(千米)

80

200

1、教师提问:从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是几比几?

第二次所行驶的路程和时间的比是几比几?

这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

或 .

3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

教师提问:什么叫做比例?组成比例的关键是什么?

板书:表示两个比相等的式子叫做比例.

关键:两个比相等

4、练习

下面哪组中的两个比可以组成比例?把组成的比例写出来.

① 和 ② 和

③ 和 ④ 和

填空

①如果两个比的比值相等,那么这两个比就( )比例.

②一个比例,等号左边的比和等号右边的比一定是( )的.

(二)比例的基本性质

1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

2、练习:指出下面比例的外项和内项.

3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以 为例,指名来说明.

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

4、学生自己任选两三个比例,计算出它的外项积和内项积.

5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

(板书课题:加上“和基本性质”,使课题完整.)

6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:

7、练习

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

三、课堂小结

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

四、巩固练习

1、说一说比和比例有什么区别.

比是表示两个数相除的关系,有两项;

比例是一个等式,表示两个比相等的关系,有四项.

2、在 这个比例中,外项是( )和( ),内项是( )和( ).

根据比例的基本性质可以写成( )×( )=( )×( ).

3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

(1) 和 (2) 和

(3) 和 (4) 和

4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

2、3、4和6

五、课后作业

根据3×4=2×6写出比例.

六、板书设计

《比例的意义》教案10

教学内容:教材第99~102页例1~例3。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、铺垫孕伏:

1.正比例关

系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、自主探究:

1.教学例2。

出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨)1020304050

所需的天数

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的"积一定)

2.教学例1

出示例1。

请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)判断。

现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例3。

出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做练一练。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做练习十二第1题。

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习十二第2~4题。

《比例的意义》教案11

教学目标:

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:

成正比例的量的特征及其判断方法。

教学难点:

理解两个变量之间的比例关系,发现思考两种相关联的量的`变化规律.

教 法:

启发引导法

学 法:

自主探究法

教 具:

课件

教学过程:

一、定向导学(5分)

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

4、导入课题

今天我们来学习成正比例的量。

5、出示学习目标

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)

自学内容:书上45页例1

自学时间:8分钟

自学方法:读书法、自学法

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

y/x=k(一定)

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)

第46页正比例图像

1、正比例图像是什么样子的?

2、完成46页做一做

3、各组的b1同学上台讲解

四、质疑探究(5分)

1、第49页第1题

2、第49页第2题

3、你还有什么问题?

五、小结检测(8分)

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测

1、49页第3题。

六、堂清作业(9分)

练习九页第4、5题。

板书设计:

成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

关系式:

y/x=k

(一定)

《比例的意义》教案12

教学目标

1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

3、体验获得成功的乐趣,建立学好数学的自信心。

教学重难点

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例。

教学工具

ppt课件

教学过程

请同学们回忆一下上学期我们学过的比的知识,谁能说说:

1、什么叫做比?比的书写形式有哪些?

2、什么叫做比值?

一、情境引入

同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)

课件出示:升旗仪式的情景

你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

不了解是吧?那老师告诉大家:

课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。

提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)

在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

那么下面呢我们看一下老师收集到的一些信息。

课件出示不同场合下的国旗

课件出示:不同场合下的国旗

提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长2.4米,宽1.6米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

那我们现在看到的这些国旗的大小都一样吗?

师小结:在不同的场合的国旗的大小是不一样的。

追问:它们的形状相同吗?(相同)

尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的`庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。

二、探究新知

下面请同学们拿出练习本,听清要求:

先写出图中国旗长与宽的比然后再求出它的比值。

学生自主计算,教师巡视。

提醒:同学们在计算时,一定要认真。注意计算结果的准确性。

哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答

根据学生汇报并分类板书。

5:10/3=3/2

2.4::16=3/2

60:40=3/2

15:10=3/2

大家同意他的计算结果吗?

师:请同学们观察黑板上的计算结果,看看有什么发现。

指名回答

师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的

板书:5:10/3 2.4:1.6

师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?

来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6

提问:那么谁能根据这四个5:10/3=3/2

2.4:1.6=3/2

60:40=3/2

15:10=3/2

相等的比也像老师一样写一个等式呢?

指名回答并根据汇报板书

我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答

老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)

大家齐读两遍,开始。

学生齐读

这就是我们今天要学习的内容—比例的意义

板书课题

提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?

指名回答

教师明确:两个比相等并在这句话的字的下面标上黑点

表示两个比相等的式子叫做比例。

2、深入理解比例的意义

那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。

那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。

追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?

(指名回答)

大家同意吗?

对学生的回答进行评价

追问:如果不相等的话,能组成比例吗?

教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!

(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??

请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!

班内交流:哪位同学说一说你们小组找出来哪些比例?

同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕

展示:2.4:1.6 = 60:40 (长:宽=长:宽)

1.6:2.4 = 40:60 (宽:长=宽:长)

2.4:60 =1.6:40 (长:长=宽:宽)

这里能组成的比例还有很多,同学们课下再找出其他的比例吧!

2、比和比例的区别?

(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!

(2)交流:谁愿意来说一说你们小组讨论的结果?

(生答)

(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格

三、智慧城堡

师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?

四、谈收获

这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?

五、全课总结:

师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

课后小结

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

《比例的意义》教案13

教学目标:

1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学关键:

理解成正比例的两个量的意义。

教学过程:

一、复习准备:

口答

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

课件出示:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

特点是:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的。

4、正方形的面积与边长的比是边长,是一个不确定的值。

学生在小组内练说发现的规律,初步感知正比例的判定。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

3、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

4、正比例关系:观察思考成正比例的量有什么特征?

小结:

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

(2)字母表达关系式。

如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

(3)质疑。

师:根据正比例的意义以及表示正比例关系的"式子想一想:构成正比例关系的两种量必须具备哪些条件?

三、巩固练习

(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

2、根据小明和爸爸的年龄变化情况

把表填写完整。父子的年龄成正比例吗?为什么?

(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

4、画一画,你会有新的发现。

彩带每米4元,购买2米、3米…彩带分别需要多少钱?

①填一填:(长度:米,价格:元)

②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

板书:

正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的

路程÷时间=速度(一定)总价÷数量=单价(一定)

=k(一定)

《比例的意义》教案14

教学内容

教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

教学目标

1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

教学重点

认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

教学难点

理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、联系生活,复习引入

(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

(2)揭示课题。

教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

二、自主探索,学习新知

1.教学例1

用课件在刚才准备题的表格中增加几列数据,变成表。

教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

教师根据学生的回答将表格完善,并作必要的板书。

教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

板书:相关联

教师:你们还发现哪些规律?

学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

板书:

2.教学试一试

教师:我们再来研究一个问题。

课件出示第52页下面的试一试。

学生先独立完成。

教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

教师根据学生的回答归纳如下:

表中的路程和时间是相关联的量,路程随着时间的变化而变化。

时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

3.教学议一议

教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

引导学生归纳出这两个问题中都有相关联的`量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

4.教学课堂活动

教师:请大家说一说生活中还有哪些是成正比例的量。

三、夯实基础,巩固提高

(1)完成练习十二的第1题。

教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

学生独立思考,先小组内交流再集体交流。

(2)完成练习十二的第2题。

四、全课小结

教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

《比例的意义》教案15

教学目标

1.使学生理解比例的意义,掌握组成比例的条件。

2.使学生能正确地判断两个比能否组成比例。

3.认识比例的各部分名称,掌握比例的基本性质。

教学重点和难点

比例的意义和性质的理解与应用。

教学过程设计

第一部分:比例的意义

(一)复习准备

1.求比值:

2.请你找出比值相等的两个比。

1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

(二)学习新课

1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

板书:80∶2

再请你说出第二次行驶路程和时间的比。

板书:240∶6

师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

思考题:

1.什么叫比例?

2.比例的各部分名称?

3.组成比例的重要条件?

采取自学→两人讨论→集体讨论。

师再次强调组成比例的`条件:

A.必须是两个比。

B.两个比的比值必须相等。

C.必须是一个式子。

最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

比例还有其它书写格式吗?请同学们看,老师怎样写。

(三)巩固反馈

1.判断下面两个比能否组成比例?

(1)1∶3和3∶9( )

(2)60∶30和160∶80( )

(4)0.2∶0.4和1.6∶4( )

并组成比例。(学生先写再说)

3.随意写比例,互相查看。(至少写2个)

第二部分:比例的性质

(一)讲授比例的性质

让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

请你指出黑板上比例中的内外项。

现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

师:比例写成分数形式时,比例的性质如何理解呢?

80×6=2×240 1.2×8=24×0.4

即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

(二)课堂练习

(放幻灯片)

(1)用比例性质验证你所写的比例是否正确?

(2)用2,8,5,20四个数组成比例。

(3)填适当的数。

3∶18=5∶( )

为什么填30?有几个答案?

4.8∶0.6=( )∶2

为什么只能填16?

12∶( )=( )∶5

有几个答案?

(4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

(5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

(三)课堂总结

(学生小结这节课所学内容。)

1.质疑:(学生、老师质疑)(幻灯片)

①表示两个相等的式子叫比例。对吗?

2.思考题:

(1)根据30×3=45×2写比例式。

(2)求x:

12∶30=8∶x

能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?

课堂教学设计说明

本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

板书设计

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:《比例的意义》教案  教案  教案词条  比例  比例词条  意义  意义词条  
教案教案

 我爱我家教案

关于我爱我家教案范文汇总7篇作为一无名无私奉献的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。我们该怎么去写教案呢?以下是小编为大家收...(展开)

教案教案

 中班美术教案

《石头画》中班美术教案推荐度:幼儿园中班美术教案推荐度:放烟花中班美术教案推荐度:幼儿园中班美术教案《瓶子》推荐度:清明节主题中班美术教案推荐度:相关推荐【精品...(展开)

教案教案

 天线宝宝教案

小班教案天线宝宝推荐度:相关推荐天线宝宝教案在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规...(展开)