多组分单相系统中各广度量,诸如V、U、H、S、A和G等均有偏摩尔量。B组分的偏摩尔量XB是指单位物质的量的B组分所拥的Xi,通常可表示为:
X=∑Xi=∑nB·XB
则:XB=Xi/nB (1)
式(1)中Xi表示B组分所拥有的总X。
1.偏摩尔量的绝对值
正常情况下,偏摩尔量(包括偏摩尔体积)的绝对值是不能获取的。
例如:水与乙醇组成的二组分系统,总体积可表示为:
V=n水·V水+n乙醇·V乙醇 (2)
式(2)中总体积V、n水和n乙醇是可测量,水和乙醇的偏摩尔体积V水和V乙醇是未知量;并且已知系统组成改变,水和乙醇的偏摩尔体积一定发生变化;一个等式出现两个未知数,因此不可能有确定解。
对于绝对值不知的系统广度量(U、H、S、A和G),其偏摩尔量的绝对值更不能获取。
2.偏摩尔量的偏微分定义
目前物化教材均选用了偏摩尔量的偏微分定义,即:
XB=(∂X/∂nB)T,p,nC (3)
式(3)表示在温度、压力及除B组分外其余各组分的物质的量均不变的条件下,系统广度量X随nB的变化率。
系统状态确定,偏摩尔量才有意义。因此偏摩尔量定义的前提是系统组成恒定。
式(3)定义式中,随着B组分的物质的量变化,系统组成也在同步变化, 这表明偏摩尔量的偏微分定义存在自然缺陷。
严格意义上分析,式(3)只是偏摩尔量的纯数学拟合。
笔者认为同式(3)相比,式(1)更接近偏摩尔量的物理本质。