悖论的类型有哪些
1925年,英国数学家拉姆塞(F. P. Ramsey,1903—1930)在一篇题为《数学基础》的论文中,最先把当时已知的悖论分为逻辑—数学悖论和语义悖论两大类。
他认为,有一种悖论不涉及内容,只与元素、类或集合、属于和不属于、基数和序数等数学概念相关,它们能用符号逻辑体系的语言表述,并且只出现在数学中,这样的悖论是逻辑—数学悖论。
另外一种悖论不是纯逻辑和纯数学的,而与一些心理的或语义的概念,如意义、命名、指称、定义、断定、真、假相关。这类悖论并不出现在数学中,它们可能不是产生于逻辑和数学中的错误,而是源自于心理学或认识论中关于意义、指称、断定等概念的含混。
不过,早在古希腊就已发现的与模糊性有关的连锁悖论,如秃头、谷堆等,以及与无穷有关的悖论,如芝诺悖论等,都很难归入上述两类范畴。
中世纪逻辑学家还讨论了许多认识论悖论,即与知道、相信、怀疑、犹疑这类认识论概念以及真假这类语义概念相关的悖论;
以及与命令、答应、允诺或希望这一类指导行动的话语或态度有关的悖论,如某人颁布了唯一一道命令:“不执行这道命令!”听话人究竟是执行还是不执行这道命令?后来把与语境和认知主体及其背景知识有关的悖论称为“认知悖论”。
人们还在不同学科领域发现了不同的悖论,例如,除古典归纳悖论(休谟问题)外,还有多个新归纳之谜;
我们可以把广义“悖论”分为以下10组。
(1)扰人的二难困境
(2)模糊性:连锁悖论
(3)芝诺悖论和无穷之谜
(5)语义悖论
(6)归纳悖论
(7)认知悖论
(8)决策和合理行动的悖论
(9)一些道德悖论
(10)中国文化中的怪论与悖论