随着全球化的深入发展,城市愈发处于全球竞争网络的枢纽位置。作为联络国家宏观治理和社会微观治理的关键环节,城市可以被看作参与全球区域竞争的重要单位。其中城市的治理状况直接影响着一个地区乃至国家的发展。然而,作为特定区域的空间治理概念,城市治理并未形成固定模式。从其动态发展过程来看,城市治理模式的演进受到经济发展、文化环境、技术变革的直接影响。其中,技术变革更是城市治理现代化的重要推动力量。进入21世纪以来互联网、人工智能、大数据、区块链等技术的蓬勃发展,在推动城市跨越式发展的同时,也促进了城市治理模式的革新。
本文首先从城市治理理念的形成出发,梳理了信息化时代下智慧城市理念的兴起过程。以信息化技术为基础的智慧城市的建设,是城市发展史上的一次重大飞跃。笔者认为,作为智慧城市治理的关键因素,信息化技术的应用和多方参与的治理模式缺一不可。其次,本文进一步探讨了智慧城市理念中存在的成本过高、权责界定模糊和隐私保护薄弱等问题。这些问题的解决,亟需治理技术的完善和优化。接下来,本文通过对区块链技术的介绍,论证了将区块链技术引入城市治理中的可能性。将区块链技术应用于城市治理之中,有助于在各城市治理主体之中确立信任关系,形成维护多方参与的信任机制,且城市治理的效率也将大幅提升。最后,针对区块链在城市治理应用中面临的困境和难点,本文提出了循序渐进的建设原则,从而为技术的落地留出缓冲期。
1信息化时代下的城市治理
在人类的发展历史中,城市的形成无疑助推了人类文明的进步。尤其是工业化时代以来,现代城市的崛起打破了传统的城乡二元结构,使得城市成为唯一能够在有限区域内集人口、资源、资本、建筑、生产设施等为一体的完整系统,进而逐步形成了资源集中生产、利用、消费的经济体系。简而言之,城市汇聚了各类物质实体与生产要素。英国城市经济学家肯尼斯·约翰·巴顿(Kenneth John Button)指出:“所有的城市都存在着基本的特征,即人口和经济活动在空间的集中……城市是一个坐落在有限空间内的各种经济市场、住房、劳动力、土地、运输等相互交织在一起的网状系统。”[1]生产要素的汇聚使现代城市成为社会主要生产要素的一个集中点,配合工业化生产方式的高效率,现代城市当仁不让地成为了整个社会生产的主导力量和和社会所生产的各种商品流通与消费的主要空间。
然而,当城市规模聚集到一定的程度,原本规模经济的优势便逐渐产生了负效应。尤其是20世纪80年代以来,全球经济高速发展,交通堵塞、环境污染、能源紧张、秩序混乱等城市病也逐步暴露。这些问题的出现,推动了城市新型社群的兴起。环保运动组织、反种族歧视组织、性别平等组织等新社会运动社群,不断争取新的政治权利,对城市生活产生了重要的影响,这也促使政府日趋重视城市的治理问题。在此影响下,城市治理成为各国城市研究的中心主题。[2]
有关治理的概念众说纷纭,其中,认同较为广泛的是1995年全球治理委员会(Commissionon Global Governance)在研究报告《我们的全球伙伴关系》中的定义:治理是个人和制度、公共和私营部门管理其共同事务的各种方法的综合,并且是一个持续的过程。通过治理,冲突或多元利益能够相互协调适应,并能采取合作行动。总的来说,治理除了包括正式的制度安排,还包括非正式的制度安排。[3]英国思克莱德大学政治学教授格里·斯托克(Gerry Stoker)认为,治理的观点为公共行政管理提供了一套组织框架,不仅明确了发展的关键趋势,并为政府解决实际问题提供了指南。[4]城市治理(urban governance)的理念便是伴随着现实问题的显现而逐步萌生与发展的。
不列颠哥伦比亚大学教授约翰·弗里德曼(John Friedmann)对城市治理的概念做出了自己的界定,他认为,“城市治理是指制定和实施城市及城市区域约束决定的社会过程。”此外,他还指出了衡量城市治理的六项标准,即城市资源是否丰饶、生态是否可持续、环境是否适合居住、空间是否安全,以及是否具有包容的氛围和关爱的精神。[5]
在信息与通信技术高速发展的背景下,城市学家也愈加关注技术给城市治理理念带来的影响,深入地探讨了技术发展给城市治理带来的新变革。其中,美国城市规划学者曼纽尔·卡斯特在《网络社会的崛起》一书中探讨了信息化城市的特征,即对流动空间的结构性支配。这一观点对城市治理领域中的城市体系规划产生了深远影响,进而也促成了智慧城市(smart city)这一概念的萌发。[6]都灵理工大学教授保罗·内罗蒂(Paolo Neirotti)带领的研究团队考察了影响城市治理的关键因素。他们通过实证研究,认为自然资源和能源、交通、建筑、生活、经济、人口是影响智慧城市治理最为关键的六个变量,而城市治理的措施也应主要围绕这些变量展开。[7]意大利那不勒斯费德里克二世大学教授罗科·帕帕(Rocco Papa)以整体的视角和前瞻的眼光展望了城市治理的发展方向,他将智慧城市的核心构成归纳为技术中心、以人为本及两者融合三个导向。其中技术中心论、以人为本的观点分别强调了信息技术和相关硬件设备、人和社会资本在智慧城市建设中的双核心作用。[8]
英国皇家科学院院士迈克尔·巴蒂(Michael Batty)认为,智慧城市的与众不同,体现在信息通信技术和传统基础设施的相互融合。智慧城市治理是使用新的数字技术进行协调、集成的城市。智慧城市的概念颠覆了传统的城市规划和城市管理,这主要体现在两个方面。一是在互联网和大数据的基础上,城市规划将从原先长达数年、数十年的跨度缩短到几天、几小时甚至实时规划与调度;二是城市的静态规划将转变为动态规划,大量有效数据的应用将帮助城市管理者提高规划精度,从而保证城市体系的动态平衡。[9]目前,智慧城市建设的确以信息系统为基础,而其具体技术已不仅仅局限于传统的移动互联网,更融合了物联网 注1 的概念。[10]
由此可见,智慧城市的治理离不开两个关键要素,一是智慧,二是治理。城市的“智慧”主要来自于以技术为支撑的数据收集、处理、分析与应用。城市的“治理”强调的是多方参与、协作共赢,而治理的最终目标也是服务于城市居民的整体利益。因此,智慧城市的治理,就是城市中的不同行为主体,利用数据、经验和知识进行逻辑推断、理性思考,并将这些推断和思考用在城市决策和行为规范的实践过程中。
总而言之,智慧城市治理理念的形成,与通信技术的革命和新技术的应用密切相关。同时,信息化时代下的城市治理,既脱胎于城市治理解决现实问题的需要,亦离不开技术发展给治理模式与方法带来的变革。可以说,技术的进步为城市治理提供了颇多新颖且更具行动力的解决方案。然而,技术的发展往往是线性逻辑,其目标是解决相应的问题。在新的技术应用下,可能会伴生一些副产品。因此,城市治理的理念必然不是一成不变的,且需要建立在一些有益的治理价值基础上。
2智慧城市治理的现实困境
从本质上来说,信息技术的应用相当于给城市中的各主体赋能,通过个体的数据反馈,促使各城市单元从个体联结为整体,推动治理过程中数据信息的利用效率。然而,由于智慧城市的治理不是简单地将互联网、物联网、人工智能等技术铺设到城市的方方面面,在治理及决策过程中还要利用大数据中心,推进技术、业务和数据的融合,实现跨层级、跨地域、跨系统、跨部门的多主体协同合作。因此,这一过程中的某些环节可能会成为智慧城市治理过程中的“短板”而“短板效应”会使得智慧城市的整体发展受到制约。武汉大学教授辜胜阻等学者曾撰文指出,当前我国城市建设中主要面临着“重项目,轻规划”“重建设、轻应用”以及“重模仿、轻研发”等问题,而变革治理和智慧整合是解决上述问题的关键。[11]笔者认为,上述问题的解决主要依靠政府治理理念的革新,而从技术发展的角度来看,智慧城市建设中还存在着三个方面的问题亟待解决。
首先,成本问题。作为以信息化技术为依托的智慧城市,其最可能面临的“短板”便是技术实现的成本问题。目前,通过人工智能技术确实能够解决某些城市问题。例如,人脸识别的应用大大提升了交通违法行为的处置效率。然而,技术和产业化之间依然存在鸿沟。由于智慧城市是围绕着居民的日常生活展开的,因此,技术不应只存在于实验室之中,而是需要产业化的实际应用。例如,未来的智慧城市需要在基础设施层面布局大量的信息采集设备。这些设备硬件布局和运营的成本,以及这些设备产生的采集、分析以及处理数据的成本都是非常高昂的。目前,存储成本下降的速度远远小于数据增长的速度。武汉大学李德仁教授的团队曾做过测算,仅以天津市安防系统为例,4.6EB的存储能力将耗费超500亿元的成本。[12]因此,未来城市建设中面临的重要问题,就是如何系统化地将新型技术运用到这些场景中去,并保证这些技术的实现成本也是政府所能够负担的。
其次,权责界定问题。在城市治理从管理转向服务的过程中,最为显著的转变便是城市治理运行模式的市场化。其中,通过PPP模式赋予部分治理职能智能化的路径,正被越来越多的地方政府所接纳。PPP(Public-Private Partnership)模式,即政府和社会资本的合作,它是公共基础设施建设中常见的项目运作模式。该模式鼓励私营企业、民营资本参与公共基础设施的建设。[13]通过“政府主导、市场运作、社会参与”的模式,城市治理监管的方式更加多元,政策释放的社会效能也更加充分,并提高了城市居民的治理参与意识。然而,PPP模式作为政府和社会资本的一种合作关系,在项目合作期间内,必然会涉及到两者权力边界、责任范围和义务担当的配置问题。此时,由于智慧城市中与治理相关的信息会牵涉到多个主体,在信息采集、传输和处理中,风险与收益、权利与义务的分配一旦失衡,可能导致多个主体之间的矛盾,并最终使得项目合作失败。
同时,智慧城市并不能完全杜绝传统城市治理中,各城市治理主体自说自话、自建自用的现象,而各主体之间的权责不清也将导致互相推诿的问题。以我国智能政务的推广为例,当前,我国政务类手机应用共有近2400个,其中地级和县级占比合计超80%。[14]这些繁多的政务应用,使得原本便民的电子政务系统,变成了冗余的“手机垃圾”,不仅耗费了大量的人力、物力、财力,更在无形之中提高了使用难度,造成了“政务信息孤岛”。因此,城市治理系统内部的协调统筹,绝不是一味地响应政策号召,更要做好顶层设计,达到优化资源配置、打破信息壁垒的目的。
最后,隐私问题。这一问题主要指向智慧城市中与信息采集相关的终端设备。信息采集设备的大规模铺展将对个人隐私形成重大挑战。[15]如前文所述,城市治理智慧的实现是建立在传感器、摄像头等设备的大范围铺设和布置的基础上的,而这些设备中的数据会包含众多隐私。并且,这种隐私的风险不仅出现在公共场所之中,同样还会出现在家庭之中。家庭之前一直被认为是个人隐私保护最重要的场所,但是伴随着智能化设备在家庭中的普及,家庭作为私人空间的属性也在降低。[16]例如,在不远的将来,智能音箱、智能冰箱、智能家居以及扫地机器人等会大量进入每个人的日常生活中。这些设备工作的主要原理就是不断地采集个人数据,并对有效数据进行分析,然后才能为人类提供智能化的服务。一旦黑客进入了数据服务中心的后台,那么这些家庭隐私数据无疑会暴露在黑客面前。
这一问题不仅是针对个人的,而且是针对整个城市治理的。由于城市治理涉及众多关键性设备,例如桥梁、地铁、道路、安防等,这些设备与人民的生命安全有着紧密的关联。如果这些重大设施的数据被黑客窃取或者篡改,其产生的安全危害将会是难以衡量的。此外智慧城市中的数据一旦被上传、存储、应用,将其从网络中彻底地清理也绝非易事。网络空间的虚拟化与复杂化,导致了传播更加广泛与迅速,这在无形之中增大了安全漏洞留存的风险,无疑也对城市基础服务功能的正常运转构成了巨大威胁。[17]上述隐私问题的存在除了直接的隐患,也将间接地动摇公众对于智慧城市建设的信心,乃至使得公众对合理的数据收集行为产生质疑,阻碍信息的传播与利用。
总的来看,智慧城市的治理理念会随着信息化技术的发展而逐步落实。然而,其在三个方面面临的关键挑战,即实现成本、权责界定和隐私保护问题,并不能通过现有技术有效解决。解决上述问题的关键便是在治理过程中,平衡城市中各方利益关系,尤其是技术与发展、技术与个人、技术掌控者和城市治理者的关系。借鉴城市治理理念的发展历程,新问题的出现亟待新型治理理念的形成。因此,通过引入新的技术,平衡城市各主体利益,进而突破治理“短板”,是解决智慧城市问题的必然要求。
随着比特币、莱特币等数字货币注2的日益普及,人们逐渐意识到,区块链技术(block chain technology)能够提供一种去中心化的信任建立机制。[18]从本质上来讲,区块链技术搭建了一个对等网络的分布式账本数据库。区块链技术能够建立一个多方共同维护且各方不可私自篡改的数据库。这一数据库用以记录所有的历史交易记录和相关数据,其所有数据并不是统一存储于中央服务器,而是分布式存储且公开透明的。[19]利用区块链技术,任何互不相识的用户都可以通过智能合约(smart contract)注3、点对点记账、数字加密等方式达成共识,无需中央机构的信任担保。因此,人们得以使用高效且值得信赖的数字货币、数字资产、智能合约等。以比特币的应用为例,其底层就采用了区块链的技术框架。比特币本身就是一串链接的数据区块,每个数据区块均记录了一组采用哈希算法注4组成的树状交易信息,这就保证了每个区块内的交易数据无法篡改。同理,区块链内链接的各区块也是不可篡改的。[20]
随着区块链技术的成熟与应用,在城市建设的过程中,这一技术在城市治理中的运用也将水到渠成。2018年7月,在工信部和发改委印发《扩大和升级信息消费三年行动计划(2018-2020年)》的通知中,明确提出要“提升信息技术服务研发应用水平,推进新型智慧城市建设,支持云计算、大数据、物联网综合研发应用,加速提高居民生活信息消费便利化水平。组织开展区块链等新型技术应用试点。”具体看来,在城市治理中,区块链的优势发挥主要体现在以下三个方面。
第一,区块链技术可以降低城市治理的成本。这一点主要体现在数据存储成本的降低,以及数据处理灵活程度的提高。通过分布式达到去中心化的目的,区块链技术将原本需要数百台服务器的中央数据库,分散在多个城市参与者的信息节点上,大幅降低了运行和维护的成本。同时,区块链中的对等节点,在保障了各城市主体提供统一的基础服务节点的同时,还能专注于自身业务。通过统一的软件部署智能合约,各信息节点能够在系统中快速更新业务模型、数据模型,且不需要重构后台数据库的存储结构和访问接口的数据结构,进而增强了“专用数据、专业处理”的灵活性和可扩展性。
第二,区块链技术可以明确责任和义务主体。通过区块链技术简化城市治理流程,能够促进城市治理的迅速反应。智慧城市中各参与主体之间能够运用共识共享的方式建立公共账本,从而形成对信息网络中传输数据的统一共识,进而可以优化繁琐的验证流程,通畅治理信息通道,促成治理信息上传一步到位、治理决策下达一步到位。以上文PPP模式为例,在信息采集、传输和处理的过程中,因为各主体的信息交流以公共账本中的智能合约为基础,所以PPP项目中每一个细微步骤的执行、协调和履约,都可以在瞬时完成多方记入。这样,不仅交易的可信度得到提升,而且政府或其他主体均可以对项目的执行情况进行实时监督,从而形成多方参与的治理生态。一旦需要对信息流进行回溯,区块链也能够实现全网全时的跟踪与审计,进而明确各方责任。
第三,区块链技术能够加强数据隐私的保护力度。以区块链为基础的智慧城市大数据平台内,各数据参与方既是数据提供者,也是数据使用者,且所有参与方都受到区块链监管模型的监控。区块链监管模型能够实时监控信息流,同时具备不可撤销、不可抵赖的特征,从而提高了城市治理数据的透明程度。这里需要强调的是,虽然区块链技术中的网络节点层次是去中心化的,但区块链监管模型采取中心化准入和权限分级模式,这为监管者做好准入筛查、隐私保护和违规信息屏蔽等工作提供了保障。[21]以此为基础,在城市涉密信息得到保障的同时,城市居民也能够获取治理信息,进而保障了公民监督权的落实。以医疗信息为例,尽管各大城市都将个人电子健康系统作为智慧城市的基础设施进行建设,然而,患者的私人信息经常受到数据泄露的影响。来自美国博伊西州立大学、丹佛大学和温思洛普大学的研究团队就提出利用区块链框架的智能合约,通过增强访问控制和数据混淆,进而使患者、医院及第三方能够安全、可互和高效地访问医疗记录,同时保护患者敏感信息。[22]
总之,针对目前智慧城市治理中的实际问题,区块链技术提供了一种可行路径。从城市治理与区块链技术的关系来看,区块链技术并不是简单地杂糅于智慧城市的具体应用之中,其核心思想是搭建城市治理主体之间的信任关系,从而推进高效率的多方治理。智慧城市实现的关键是数据信息的获取,然而,传统的互联网中心化信任机制难以保证数据的可靠性和安全性,进而导致了城市中的各治理主体往往无法达成数据上传的统一意愿。因此,通过区块链技术强化数据安全,完善城市治理主体的信任关系显得尤为重要。
区块链在城市治理中的应用,为城市治理现代化提供了一种基于技术维度的治理模式革新。在区块链技术辅助下的城市治理体系,将会给城市各治理主体之间的关系带来颠覆性的影响。从其积极意义上来看,区块链技术的优势是十分显著的。首先,区块链技术难以篡改的特性保证了城市数据信息的安全,在一定程度上避免了黑客攻击的隐患。其次,区块链技术拥有分布式结构,即使某个城市信息节点遭遇故障,也能够保证整体系统的运行安全。最后,区块链以对等的方式把各城市主体连接起来,赋予了城市内智能合约透明性、可信性以及自动执行、强制履约的优点。通过各方共同维护一个系统,不仅使得系统更加透明,也更容易取得各方的信任。这种高信任机制促使城市治理从政府单一的管理,走向多方参与、协作共赢的新模式。当然,由于区块链技术发展尚未成熟,其在城市治理中的应用也将遭遇一定的困难。一方面,区块链技术本身尚存的问题将成为应用过程中的阻碍,这主要体现在三个方面。
第一,区块链的性能和扩展性能否满足城市的发展要求。在城市被信息化技术高度渗透的过程中,任一城市信息节点都有机会参与记账环节的区块链网络中,参与记账的节点需要同步全部区块信息方才可以进行交易的处理与记账。在交易大小相同的情况下,区块容量和区块间隔时间是影响区块链吞吐量的两个核心参数。在实际应用中,区块容量无法无限扩大,而如果区块间隔时间过小,可能会由于不同节点来不及完全同步到最新的区块而产生新区块,新区块与旧区块的分叉将严重影响区块链的持续运行。目前主流的公有链仍然使用工作量证明共识机制,对于记账的节点来说,其需要消化大量的计算资源以运行哈希运算,这将限制节点效率的实现。此外,由于区块链数据只是追加而并没有被删除,随着区块数量的加大,系统对节点的存储空间和吞吐量性能也提出了越来越高的要求。以以太坊为例,目前的总区块文件的大小已经突破了500GB,如果要实现每秒上百万笔交易速度,需要提供每秒数百MB的吞吐能力的节点,这个要求非常高。因此,整个网络同步的效率受限于网络中延迟最长的节点。从目前的技术情况看,区块链的吞吐量、储存带宽难以满足整个城市体系的需求,仅能在部分领域展开应用。
第二,区块链中数据隐私和访问控制仍有待改进。在城市信息“上链”的过程中,各参与方都能够获得完整数据备份,所有数据对于参与方来讲是透明的,无法使参与方仅获取特定信息。在比特币的运行机制中,隔断交易地址和地址持有人真实身份的关联,使得其拥有了匿名的效果。因此,虽然交易过程中能够看到每一笔转账记录的发送方、接受方地址,但人们无法对应到现实世界中的具体个人。然而,相较于比特币,城市作为一个复杂的有机体,其需要承载更多的业务。以城市中区块链租赁为例,如何将房源信息、租赁权益数字化,转换为适合流转的链上资产,实现实体世界的链上映射,并且保证这些租赁合同信息保存在区块链上等,目前尚未有成熟的方案。然而,这些问题在传统的城市租赁系统中并不存在。如果城市通过区块链技术承载整个城市的信息业务,比如实名资产、合同信息等,这些合同如何保存在区块链上,如何在实体世界中执行,仍需虚拟技术与实际情况的深度融合。
第三,区块链技术接入城市治理的机制有待完善。目前,公有链社区摸索出了“硬分叉”和“软分叉”注5等升级机制,但其遗留问题有待观察。[23]由于公有链不能直接地“关停”修复,因此安全漏洞是区块链的致命威胁。目前,主要的解决方案是在联盟链这样的多中心系统中,通过关闭系统来升级区块链底层,例如对于常规代码升级,通过分离代码和数据,进而实现可控的智能合约更替。这些手段有助于控制风险、纠正错误。然而,在区块链应用的初级阶段,直接关闭系统对于整个城市运转的影响仍然需要顾虑。
另一方面,由于技术的服务对象最终是人,在追求技术进步的同时,城市治理不能忘记城市中的每一位居民。根据中国互联网络信息中心于2019年2月28日在北京发布的第43次《中国互联网络发展状况统计报告》,截至2018年12月,中国互联网用户达到8.29亿,其中移动互联网用户为8.17亿。以中国总人口13.9亿计算,中国仍然有约5.61亿人尚未容纳进“互联网时代”。随着城市的大规模扩张和技术的急速迭代,在高度信息化的时代,这5.61亿人是被技术遗忘还是被技术发展所裹挟,如何对他们的信息进行有效的治理,如何使他们共享到城市发展与技术进步的红利,这仍然是城市建设过程中无法逃避的问题。
区块链应用于城市治理中所面临的这些困境,一方面需要技术的迭代更新,另一方面,需要城市的长远规划和顶层设计,为城市发展预留技术缓冲期。以《上海市城市总体规划(2017-2035年)》为例,其中重点提及了为城市未来发展建立空间留白机制。此外,雄安新区的规划在加强引进技术创新的同时,也注重系统集成和建设实施的整体谋划,这一做法不仅考虑了为未来发展预留空间,也避免了一蹴而就的“超前”规划。城市发展缓冲期的存在,大大降低了城市整体规划和新兴技术落地的试错成本,也为技术应用初期城市各方面关系的协调、问题的解决开拓思路。
5结 语
从城市治理理念诞生以来,技术的变革催生了实践的进步,城市也向着更加智慧的方向前行。智慧城市的有效治理与技术发展一样,其实现并不是一劳永逸的,而需要不断地迭代更新。当前,智慧城市的建设离不开信息数字化,即通过互联网、物联网和大数据等技术推动城市数字化建设。然而,目前依靠联网收集到的数据许多并没有实际用处,更多的是不同治理主体的“自说自话”,仅仅是“为了数据而收集”,这显然与“智慧”相去甚远。同时,缺乏公众参与的城市治理不仅使居民难以获得融入感,而且难以实现社群协作的价值。因此,无论是城市“智慧”的实现,还是治理过程的高效实施,都离不开各城市治理主体的协同。
区块链技术主要解决的便是城市治理中的协同问题。这一概念包括两个方面,一个是城市治理主体之间的协同,另一个是数据信息交流之间的协同。具体看来,在智慧城市的治理中,区块链的优势发挥主要体现在三个方面。首先,区块链技术降低了城市中治理数据的存储成本,提高了数据处理的灵活程度,为城市治理的协同提供了可行条件;其次,区块链技术可以简化治理流程,明确责任和义务主体,进而促进城市治理的迅速反应,提高城市治理的协同效率;最后,区块链技术在提升城市治理透明度的同时,能够加强数据隐私的保护力度,保障了城市治理协同体系的有序运转。
从技术发展的角度来看,区块链技术更接近于对现有人与人、物与物、人与物“关系”的革新。基于互联网、大数据、云计算等核心技术,区块链将重塑各种“关系”的信任机制,使得信息的传递和治理过程突破效率的桎梏,乃至创造新的价值。通过区块链技术,人们能够赋予传统城市治理以新的活力,赋予信息技术以新的社会价值。城市是一个纷繁复杂的综合系统,尤其是信息化技术赋予城市中的各主体以一定的自主处理信息、传递数据的能力后,城市的治理难度更是急剧增加。此时,区块链技术在城市治理现代化过程中的应用,为解决实际问题提供了切实可行的技术手段。
注 释
注 1:物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,以及所有的物品与网络的连接,以方便识别、管理和控制。物联网的架构由三个主要部分组成,包括装置与感知层(Device and Sensor Domain)、网络层(Network Domain)以及应用层(Application Domain)。物联网技术为智慧城市的实现提供了技术支撑。
注 2:数字货币可用于真实的商品和服务交易,简称为 DIGICCY,是英文“Digital Currency”的缩写,是电子货币形式的替代货币。数字金币和密码货币都属于数字货币。由于数字货币能被用于真实的商品和服务交易,且不局限在网络游戏中,因此,数字货币不同于虚拟世界中的虚拟货币。早期的数码货币(数字黄金货币)是一种以黄金重量命名的电子货币形式。现在的数码货币,比如比特币、莱特币等是依靠校验和密码技术来创建、发行和流通的电子货币。其特点是运用 P2P 对等网络技术来发行、管理和流通货币,理论上避免了官僚机构的审批,让每个人都有权发行货币。
注 3:智能合约(Smart Contract) 是一种旨在以信息化方式传播、验证或执行合同的计算机协议。其中,协议是技术实现(Technical Implementation),其与区块链技术(Blockchain Technology)紧密结合。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约的目的是提供优于传统合约的安全方法,并减少与合约相关的其他交易成本。
注 4 :哈希(Hash)是一种加密算法,其规则为哈希函数(Hash Function),也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息 M 映射成为一个长度较短且长度固定的值 H(M),H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要(Message Digest)。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。
注 5:如果区块链软件的共识规则被改变,并且这种规则改变无法向前兼容,旧节点无法认可新节点产生的区块,即为硬分叉。这时旧节点会拒绝新规则的区块,于是新节点和旧节点会开始在不同的区块链上运行,由于新旧节点可能长期存在,这种分叉也可能会长期持续下去。如果区块链的共识规则改变后,这种改变是向前兼容的,旧节点可以兼容新节点产生的区块,即为软分叉。软分叉通常刚开始并不会产生两条区块链,因为新规则下产生的区块会被旧节点接受,旧节点只是无法识别新规则的真实意义。所以新旧节点仍然处于同一条区块链上,对整个系统的影响也就较小。
参考文献
[1]巴顿 K J. 城市经济学理论和政策[M]. 上海社会科学院部门经济研究所城市经济研究室,译. 北京:商务印书馆, 1984.
[2]顾朝林. 发展中国家城市管治研究及其对我国的启发[J]. 城市规划,2001(09): 14.
[3]陈崇山. 治理理论给受众参与的启示[J]. 马克思主义与现实,2003(04): 105.
[4]Stoker G. Governance as theory: Five propositions[J]. International Social Science Journal, 2002, 50(155): 19-26.
[5]Friedmann J. The good city: In defense of utopian thinking[J]. Urban Planning Overseas, 2010, 24(02): 470.
[6]卡斯特尔 M. 网络社会的崛起[M]. 夏铸九,王志弘,等,译. 北京:社会科学文献出版社,2001.
[7]Neirotti P, De Marco A, Cagliano A C. Current trends in smart city initiatives: Some stylised facts[J]. Cities, 2014, 38: 25-28.
[8]Papa R, Gargiulo C, Galderisi A. Towards an urban planners’ perspective on smart city[J]. Journal of Land Use, 2013, 6(01): 7-11.
[9]Batty M, Axhausen K W, Giannotti F. Smart cities of the future[J]. European Physical Journal Special Topics, 2012, 214(01): 481-483.
[10]Gubbi J, Buyya R, Marusic S. Internet of things(IoT): A vision, architectural elements, and future directions[J]. Future Generation Computer Systems, 2013, 29(07): 1645-1660.
[11]辜胜阻,杨建武,刘江日. 当前我国智慧城市建设中的问题与对策[J]. 中国软科学,2013(01): 8-12.
[12]李德仁,姚远,邵振峰. 智慧城市中的大数据[J]. 武汉大学学报:信息科学版,2014, 39(06): 633-634.
[13]刘薇. PPP 模式理论阐释及其现实例证[J]. 改革,2015(01): 78-89.
[14]费军,贾慧真. 智慧政府视角下政务 APP 提供公共服务平台路径选择[J]. 电子政务,2015(09): 34-35.
[15]王元卓,靳小龙,程学旗. 网络大数据:现状与展望[J]. 计算机学报,2013(06): 11.
[16]Iachello G, Hong J. End-user privacy in human-computer interaction[J]. Foundations and Trends in Human-Computer Interaction, 2007, 1(01): 16-17.
[17]Braun T, Fung B C M, Iqbal F, et al. Security and privacy challenges in smart cities[J]. Sustainable Cities and Society, 2018, 39: 17-18.
[18]Chowdhury A, Mendelson B K. Digital currency and financial system: The case of bitcoin[J]. Journal of Soils & Sediments, 2014, 6(04): 42-43.
[19]Zhang Y, Wen J. The IoT electric business model: Using blockchain technology for the internet of things[J]. Peer-to-Peer Networking and Applications, 2017, 10(04): 983-994.
[20]黄征,李祥学,来学嘉,等. 区块链技术及其应用[J]. 信息安全研究,2017(03): 239-240.
[21]Zhu Y, Riad K, Guo R, et al. New instant confirmation mechanism based on interactive incontestable signature in consortium blockchain[J]. Frontiers of Computer Science, 2016(04): 1-3.
[22]Dagher G G, Mohler J, Milojkovic M, et al. Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology[J]. Sustainable Cities and Society, 2018, 39: 292-296.
[23]王健,陈恭亮. 比特币区块链分叉研究[J]. 通信技术,2018(01): 149-155.